499 research outputs found

    The Mass Dependence of Stellar Rotation in the Orion Nebula Cluster

    Get PDF
    We have determined new rotation periods for 404 stars in the Orion Nebula Cluster using the Wide Field Imager attached to the MPG/ESO 2.2 m telescope on La Silla, Chile. Mass estimates are available for 335 of these and most have M < 0.3 M_sun. We confirm the existence of a bimodal period distribution for the higher mass stars in our sample and show that the median rotation rate decreases with increasing mass for stars in the range 0.1 < M <0.4 M_sun. While the spread in angular momentum (J) at any given mass is more than a factor of 10, the majority of lower mass stars in the ONC rotate at rates approaching 30% of their critical break-up velocity, as opposed to 5-10% for solar-like stars. This is a consequence of both a small increase in observed specific angular momentum (j=J/M) and a larger decrease in the critical value of j with decreasing mass. Perhaps the most striking fact, however, is that j varies by so little - less than a factor of two - over the interval 0.1-1.0 M_sun. The distribution of rotation rates with mass in the ONC (age ~ 1 My) is similar in nature to what is found in the Pleiades (age ~ 100 My). These observations provide a significant new guide and test for models of stellar angular momentum evolution during the proto-stellar and pre-main sequence phases.Comment: 11 pages, 3 figure

    Magnetar Spindown, Hyper-Energetic Supernovae, and Gamma Ray Bursts

    Full text link
    The Kelvin-Helmholtz cooling epoch, lasting tens of seconds after the birth of a neutron star in a successful core-collapse supernova, is accompanied by a neutrino-driven wind. For magnetar-strength (1015\sim10^{15} G) large scale surface magnetic fields, this outflow is magnetically-dominated during the entire cooling epoch.Because the strong magnetic field forces the wind to co-rotate with the protoneutron star,this outflow can significantly effect the neutron star's early angular momentum evolution, as in analogous models of stellar winds (e.g. Weber & Davis 1967). If the rotational energy is large in comparison with the supernova energy and the spindown timescale is short with respect to the time required for the supernova shockwave to traverse the stellar progenitor, the energy extracted may modify the supernova shock dynamics significantly. This effect is capable of producing hyper-energetic supernovae and, in some cases, provides conditions favorable for gamma ray bursts. We estimate spindown timescales for magnetized, rotating protoneutron stars and construct steady-state models of neutrino-magnetocentrifugally driven winds. We find that if magnetars are born rapidly rotating, with initial spin periods (PP) of 1\sim1 millisecond, that of order 1051105210^{51}-10^{52} erg of rotational energy can be extracted in 10\sim10 seconds. If magnetars are born slowly rotating (P10P\gtrsim10 ms) they can spin down to periods of 1\sim1 second on the Kelvin-Helmholtz timescale.Comment: 16 pages, 5 figures, emulateap

    Should we adjust for seasonality in food consumption surveys? The answer in Switzerland.

    Get PDF
    Background : Due to market globalization and high availability of various foods throughout the year, adjustment for seasonality at food level may have become unnecessary. Objective : To describe food consumption across seasons using data from the first National Nutrition Survey in Switzerland. Methods : National population-based cross-sectional survey included the three linguistic regions of Switzerland

    Obscuring and feeding supermassive black holes with evolving nuclear star clusters

    Full text link
    Recently, high resolution observations with the help of the near-infrared adaptive optics integral field spectrograph SINFONI at the VLT proved the existence of massive and young nuclear star clusters in the centres of a sample of Seyfert galaxies. With the help of high resolution hydrodynamical simulations with the PLUTO-code, we follow the evolution of such clusters, especially focusing on mass and energy feedback from young stars. This leads to a filamentary inflow of gas on large scales (tens of parsec), whereas a turbulent and very dense disc builds up on the parsec scale. Here, we concentrate on the long-term evolution of the nuclear disc in NGC 1068 with the help of an effective viscous disc model, using the mass input from the large scale simulations and accounting for star formation in the disc. This two-stage modelling enables us to connect the tens of parsec scale region (observable with SINFONI) with the parsec scale environment (MIDI observations). At the current age of the nuclear star cluster, our simulations predict disc sizes of the order of 0.8 to 0.9 pc, gas masses of 1.0e6 Msun and mass transfer rates through the inner boundary of 0.025 Msun/yr in good agreement with values derived from observations.Comment: 6 pages, 3 figures, to appear in the proceedings of the IAU General Assembly 2009, Rio de Janeiro, S267 Co-evolution of Central Black Holes and Galaxie

    Sub-lethal fungicide concentrations both reduce and stimulate the growth rate of non-target soil fungi from a natural grassland

    Get PDF
    Conventional agriculture has relied extensively on the use of fungicides to prevent or control crop diseases. However, some fungicides, particularly broad-spectrum fungicides, not only eliminate target pathogens but also non-target and beneficial soil microbes. This scenario is not only limited to agricultural soil, but this may also potentially occur when neighboring environments are contaminated by fungicides through spray drift. Although concentrations may be sub-lethal, the chemicals may accumulate in the soil when used continuously resulting in more toxic effects. In this study, the effect on the colony extension rate of 31 filamentous soil saprobic fungi, initially isolated from a protected grassland ecosystem, were analyzed under fungicide treatment. These isolates were considered naive (no deliberate exposure), hence presumed to have not developed resistance. Two currently used fungicides with different modes of action were added to Potato Dextrose Agar at varying concentrations. Results showed a wide range of tolerance and sensitivity to isopyrazam and prothioconazole. Fungi belonging to the phylum Basidiomycota were most negatively affected by both fungicides. Phylum Mucoromycota were the most tolerant to prothioconazole while isolates belonging to phylum Ascomycota differed in their responses to both fungicides. Negative effects on the growth rate were more pronounced at higher concentrations except for a few isolates that were inhibited at 1 mg·L−1. A slightly positive effect was also observed in three of the isolates under fungicide treatment. Lastly, the negative impact of fungicides was not associated with the growth strategy of the fungi, whether fast growing or slow growing, rather it is isolate-specific and phylogenetically conserved. The results of this study demonstrate that co-occurring fungi differ in their sensitivity to fungicides even without prior exposure. This difference in sensitivity among co-occurring fungi may result in shifts in community composition of the soil fungal community to the detriment of the more sensitive isolates

    Accretion process onto super-spinning objects

    Full text link
    The accretion process onto spinning objects in Kerr spacetimes is studied with numerical simulations. Our results show that accretion onto compact objects with Kerr parameter (characterizing the spin) aM|a| M is very different. In the super-spinning case, for a|a| moderately larger than MM, the accretion onto the central object is extremely suppressed due to a repulsive force at short distance. The accreting matter cannot reach the central object, but instead is accumulated around it, forming a high density cloud that continues to grow. The radiation emitted in the accretion process will be harder and more intense than the one coming from standard black holes; e.g. γ\gamma-rays could be produced as seen in some observations. Gravitational collapse of this cloud might even give rise to violent bursts. As a|a| increases, a larger amount of accreting matter reaches the central object and the growth of the cloud becomes less efficient. Our simulations find that a quasi-steady state of the accretion process exists for a/M1.4|a|/M \gtrsim 1.4, independently of the mass accretion rate at large radii. For such high values of the Kerr parameter, the accreting matter forms a thin disk at very small radii. We provide some analytical arguments to strengthen the numerical results; in particular, we estimate the radius where the gravitational force changes from attractive to repulsive and the critical value a/M1.4|a|/M \approx 1.4 separating the two qualitatively different regimes of accretion. We briefly discuss the observational signatures which could be used to look for such exotic objects in the Galaxy and/or in the Universe.Comment: 11 pages, 5 figures. v2: with explanation of the origin of the critical value |a|/M = 1.

    Atomic alignment and Diagnostics of Magnetic Fields in Diffuse Media

    Full text link
    We continue our studies of atomic alignment in diffuse media, in particularly, in interstellar and circumstellar media, with the goal of developing new diagnostics of magnetic fields in these environments. We understand atomic alignment as alignment of atoms or ions in their ground state. Such atoms are sensitive to weak magnetic fields. In particular, we provide predictions of the polarization that arises from astrophysically important aligned atoms (ions) with fine structure of the ground level, namely, OI and SII and Ti II. Unlike our earlier papers which dealt with weak fields only, a substantial part of our current paper is devoted to the studies of atomic alignment when magnetic fields get strong enough to affect the emission from the excited level, i.e. with the regime when the magnetic splitting is comparable to the line-width. This is a regime of Hanle effect modified by the atomic alignment. Using an example of emission and absorption lines of SII ion we demonstrate how polarimetric studies can probe magnetic fields in circumstellar regions and accretion disks. In addition, we show that atomic alignment induced by anisotropic radiation can induce substantial variations of magnetic dipole transitions within the ground state, thus affecting abundance studies based on this emission. Moreover, the radio emission is polarized, provides a new way to study magnetic fields, e.g. at the epoch of Universe reionization.Comment: Minor changes, accepted to Ap

    Sodium demand of microorganisms in the phyllosphere and the organic layer of a tropical montane forest in south Ecuador

    Get PDF
    Recent studies raise the hypothesis that Na shortage restricts decomposition and affects the carbon cycle in tropical forests. When Na concentrations in soils are low and the stands are far off-coast, they do not receive substantial Na inputs from the atmosphere. Since terrestrial plants have low concentrations of Na, which is not considered as an essential element, the demand of soil fauna may not be covered. Yet, in contrast to animals, little is known of Na demands of fungi and phyllosphere microorganisms. We present results from a study on Na limitation in a montane forest ecosystem in South Ecuador, which is located on the eastern cordillera of the Andes. We tested the hypotheses that (1) the study area is characterized by low Na concentrations because of low deposition rates with incident precipitation (wind directions mainly from the Amazonian Basin), (2) decomposition processes are limited by fauna and fungal Na restrictions and (3) Na is retained in the canopy because of Na limitation of microorganisms in phyllosphere. Since 1998, we measure Na fluxes in rainfall, throughfall, stemflow, litter leachate, litterfall and organic layer in a microcatchment under an undisturbed lower montane rainforest. Results reveal comparatively low Na concentrations in the ecosystem and similar Na concentrations in throughfall and stemflow. Since Na fluxes are lower with throughfall than with incident rainfall, we conclude that Na is retained in the canopy. To explore the role of the phyllosphere in Na retention we sampled leaves covered by phyllosphere microorganisms and leaves without phyllosphere cover from several tree species, which were sprayed with a NaCl solution containing 0.5 mg L-1 Na, corresponding to the Na concentration in incident rainfall in our study area. Additionally, responses of litter decomposition to Na additions and the involved interaction of soil fungi and fauna were tested in a litterbag experiment at two sites (1000 and 2000 m a.s.l.). Results revealed enhanced decomposition rates following Na additions, though only in the presence of soil fauna. These results might have future ecosystem implications, since our time series showed that total Na deposition decreased within the past 15 years from ca. 40 kg ha-1 a-1 to 10 kg ha-1 a-1, suggesting a potential role of Na in regulating ecosystem processes

    Equation-of-state dependence of the gravitational-wave signal from the ring-down phase of neutron-star mergers

    Full text link
    Neutron-star (NS) merger simulations are conducted for 38 representative microphysical descriptions of high-density matter in order to explore the equation-of-state dependence of the postmerger ring-down phase. The formation of a deformed, oscillating, differentially rotating very massive NS is the typical outcome of the coalescence of two stars with 1.35 MM_{\odot} for most candidate EoSs. The oscillations of this object imprint a pronounced peak in the gravitational-wave (GW) spectra, which is used to characterize the emission for a given model. The peak frequency of this postmerger GW signal correlates very well with the radii of nonrotating NSs, and thus allows to constrain the high-density EoS by a GW detection. In the case of 1.35-1.35 MM_{\odot} mergers the peak frequency scales particularly well with the radius of a NS with 1.6 MM_{\odot}, where the maximum deviation from this correlation is only 60 meters for fully microphysical EoSs which are compatible with NS observations. Combined with the uncertainty in the determination of the peak frequency it appears likely that a GW detection can measure the radius of a 1.6 MM_{\odot} NS with an accuracy of about 100 to 200 meters. We also uncover relations of the peak frequency with the radii of nonrotating NSs with 1.35 MM_{\odot} or 1.8 MM_{\odot}, with the radius or the central energy density of the maximum-mass Tolman-Oppenheimer-Volkoff configuration, and with the pressure or sound speed at a fiducial rest-mass density of about twice nuclear saturation density. Furthermore, it is found that a determination of the dominant postmerger GW frequency can provide an upper limit for the maximum mass of nonrotating NSs. The prospects for a detection of the postmerger GW signal and a determination of the dominant GW frequency are estimated to be in the range of 0.015 to 1.2 events per year with the upcoming Advanced LIGO detector.Comment: 29 pages, 28 figures, accepted for publication in Phys. Rev.

    Spectropolarimetry of the Classical T Tauri Star TW Hydrae

    Get PDF
    We present high resolution (R ~ 60,000) circular spectropolarimetry of the classical T Tauri star TW Hydrae. We analyze 12 photospheric absorption lines and measure the net longitudinal magnetic field for 6 consecutive nights. While no net polarization is detected the first five nights, a significant photospheric field of Bz = 149 \pm 33 G is found on the sixth night. To rule out spurious instrumental polarization, we apply the same analysis technique to several non-magnetic telluric lines, detecting no significant polarization. We further demonstrate the reality of this field detection by showing that the splitting between right and left polarized components in these 12 photospheric lines shows a linear trend with Lande g-factor times wavelength squared, as predicted by the Zeeman effect. However, this longitudinal field detection is still much lower than that which would result if a pure dipole magnetic geometry is responsible for the mean magnetic field strength of 2.6 kG previously reported for TW Hya. We also detect strong circular polarization in the He I 5876 and the Ca II 8498 emission lines, indicating a strong field in the line formation region of these features. The polarization of the Ca II line is substantially weaker than that of the He I line, which we interpret as due to a larger contribution to the Ca II line from chromospheric emission in which the polarization signals cancel. However, the presence of polarization in the Ca II line indicates that accretion shocks on Classical T Tauri stars do produce narrow emission features in the infrared triplet lines of Calcium.Comment: One tar file. The paper has 22 pages, 5 figures. Accepted by AJ on Sep 10, 200
    corecore