research

Magnetar Spindown, Hyper-Energetic Supernovae, and Gamma Ray Bursts

Abstract

The Kelvin-Helmholtz cooling epoch, lasting tens of seconds after the birth of a neutron star in a successful core-collapse supernova, is accompanied by a neutrino-driven wind. For magnetar-strength (1015\sim10^{15} G) large scale surface magnetic fields, this outflow is magnetically-dominated during the entire cooling epoch.Because the strong magnetic field forces the wind to co-rotate with the protoneutron star,this outflow can significantly effect the neutron star's early angular momentum evolution, as in analogous models of stellar winds (e.g. Weber & Davis 1967). If the rotational energy is large in comparison with the supernova energy and the spindown timescale is short with respect to the time required for the supernova shockwave to traverse the stellar progenitor, the energy extracted may modify the supernova shock dynamics significantly. This effect is capable of producing hyper-energetic supernovae and, in some cases, provides conditions favorable for gamma ray bursts. We estimate spindown timescales for magnetized, rotating protoneutron stars and construct steady-state models of neutrino-magnetocentrifugally driven winds. We find that if magnetars are born rapidly rotating, with initial spin periods (PP) of 1\sim1 millisecond, that of order 1051105210^{51}-10^{52} erg of rotational energy can be extracted in 10\sim10 seconds. If magnetars are born slowly rotating (P10P\gtrsim10 ms) they can spin down to periods of 1\sim1 second on the Kelvin-Helmholtz timescale.Comment: 16 pages, 5 figures, emulateap

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019