63 research outputs found

    Suspension flow: do particles act as mixers?

    Full text link
    Recently, Roht et al. [J. Contam. Hydrol. 145, 10-16 (2013)] observed that the presence of suspended non-Brownian macroscopic particles decreased the dispersivity of a passive solute, for a pressure-driven flow in a narrow parallel-plates channel at low Reynolds number. This result contradicts the idea that the streamline distortion caused by the random diffusive motion of the particles increases the dispersion and mixing of the solute. Therefore, to estimate the influence of this motion on the dispersivity of the solute, and investigate the origin of the reported decrease, we experimentally studied the probability density functions (pdf) of the particle velocities, and spatio-temporal correlations, in the same experimental configuration. We observed that, as the mean suspension velocity exceeds a critical value, the pdf of the streamwise velocities of the particles markedly changes from a symmetric distribution to an asymmetric one strongly skewed to high velocities and with a peak of most probable velocity close to the maximum velocity. The latter observations and the analysis of suspension microstructure indicate that the observed decrease in the dispersivity of the solute is due to particle migration to the mid-plane of the channel, and consequent flattening of the velocity profile. Moreover, we estimated the contribution of particle diffusive motion to the solute dispersivity to be three orders of magnitude smaller than the reported decrease, and thus negligible. Solute dispersion is then much more affected by how particles modify the flow velocity profile across the channel, than by their diffusive random motion

    Velocity fluctuations and population distribution in clusters of settling particles at low Reynolds number

    Get PDF
    A study on the spatial organization and velocity fluctuations of non Brownian spherical particles settling at low Reynolds number in a vertical Hele-Shaw cell is reported. The particle volume fraction ranged from 0.005 to 0.05, while the distance between cell plates ranged from 5 to 15 times the particle radius. Particle tracking revealed that particles were not uniformly distributed in space but assembled in transient settling clusters. The population distribution of these clusters followed an exponential law. The measured velocity fluctuations are in agreement with that predicted theoretically for spherical clusters, from the balance between the apparent weight and the drag force. This result suggests that particle clustering, more than a spatial distribution of particles derived from random and independent events, is at the origin of the velocity fluctuations.Comment: 13 pages, 8 figure

    Comment on “Faraday waves in a Hele–Shawcell” [Phys. Fluids 30, 042106 (2018)]

    Get PDF
    Comment on “Faraday waves in a Hele-Shaw cell” [Phys Fluids 30, 042106 (2018).We propose improved dimensionless variables and scaling law to describe the height ofFaraday waves in a vertically vibrating Hele-Shaw cell. In comparison with those suggestedby Li et al., the influence of the liquid depth d on the wave height H is disregarded, andthe critical acceleration Fc, at which the Faraday instability is triggered, is now taken intoaccount. We support our approach with results from an additional set of experimental data,that includes the measurement of Fc, and encompasses the parameter range studied by Liet al.Fil: Boschan, A.. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Noseda, M.. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; ArgentinaFil: Aguirre, Maria Alejandra. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Piva, M.. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Grupo de Medios Porosos; Argentin

    Miscible displacement fronts of shear thinning fluids inside rough fractures

    Get PDF
    The miscible displacement of a shear-thinning fluid by another of same rheological properties is studied experimentally in a transparent fracture by an optical technique imaging relative concentration distributions. The fracture walls have complementary self-affine geometries and are shifted laterally in the direction perpendicular to the mean flow velocity {\bf U} : the flow field is strongly channelized and macro dispersion controls the front structure for P\'{e}clet numbers above a few units. The global front width increases then linearly with time and reflects the velocity distribution between the different channels. In contrast, at the local scale, front spreading is similar to Taylor dispersion between plane parallel surfaces. Both dispersion mechanisms depend strongly on the fluid rheology which shifts from Newtonian to shear-thinning when the flow rate increases. In the latter domain, increasing the concentration enhances the global front width but reduces both Taylor dispersion (due to the flattening of the velocity profile in the gap of the fracture) and the size of medium scale front structures

    Two-Photon 2s<->1s Transitions during Recombination of Hydrogen in the Universe

    Full text link
    Based on the standard cosmological model, we calculate the correction to the rate of two-photon 2s1s transitions in the hydrogen atom under primordial hydrogen plasma recombination conditions that arises when the induced transitions under equilibrium background radiation with a blackbody spectrum and plasma recombination radiation are taken into account.Comment: 20 pages, 9 figure

    Advanced Three Level Approximation for Numerical Treatment of Cosmological Recombination

    Full text link
    New public numerical code for fast calculations of the cosmological recombination of primordial hydrogen-helium plasma is presented. The code is based on the three-level approximation (TLA) model of recombination and allows us to take into account some fine physical effects of cosmological recombination simultaneously with using fudge factors. The code can be found at http://www.ioffe.ru/astro/QC/CMBR/atlant/atlant.htmlComment: 10 pages, 7 figures, 1 table, to be submitted to MNRA

    How exactly did the Universe become neutral?

    Get PDF
    We present a refined treatment of H, He I, and He II recombination in the early Universe. The difference from previous calculations is that we use multi-level atoms and evolve the population of each level with redshift by including all bound-bound and bound-free transitions. In this framework we follow several hundred atomic energy levels for H, He I, and He II combined. The main improvements of this method over previous recombination calculations are: (1) allowing excited atomic level populations to depart from an equilibrium distribution; (2) replacing the total recombination coefficient with recombination to and photoionization from each level directly at each redshift step; and (3) correct treatment of the He I atom, including the triplet and singlet states. We find that the ionization fraction x_e = n_e/n_H is approximately 10% smaller at redshifts <~800 than in previous calculations, due to the non-equilibrium of the excited states of H, which is caused by the strong but cool radiation field at those redshifts. In addition we find that He I recombination is delayed compared with previous calculations, and occurs only just before H recombination. These changes in turn can affect the predicted power spectrum of microwave anisotropies at the few percent level. Other improvements such as including molecular and ionic species of H, including complete heating and cooling terms for the evolution of the matter temperature, including collisional rates, and including feedback of the secondary spectral distortions on the radiation field, produce negligible change to x_e. The lower x_e at low z found in this work affects the abundances of H molecular and ionic species by 10-25%. However this difference is probably not larger than other uncertainties in the reaction rates.Comment: 24 pages, including 18 figures, using emulateapj.sty, to appear in ApJ, the code recfast can be obtained at http://www.astro.ubc.ca/people/scott/recfast.html (in FORTRAN) and http://cfa-www.harvard.edu/~sasselov/rec/ (in C

    Cryopyrin-Associated Periodic Syndrome: An Update on Diagnosis and Treatment Response

    Get PDF
    Cryopyrin-associated periodic syndrome (CAPS) is a rare hereditary inflammatory disorder encompassing a continuum of three phenotypes: familial cold autoinflammatory syndrome, Muckle-Wells syndrome, and neonatal-onset multisystem inflammatory disease. Distinguishing features include cutaneous, neurological, ophthalmologic, and rheumatologic manifestations. CAPS results from a gain-of-function mutation of the NLRP3 gene coding for cryopyrin, which forms intracellular protein complexes known as inflammasomes. Defects of the inflammasomes lead to overproduction of interleukin-1, resulting in inflammatory symptoms seen in CAPS. Diagnosis is often delayed and requires a thorough review of clinical symptoms. Remarkable advances in our understanding of the genetics and the molecular pathway that is responsible for the clinical phenotype of CAPS has led to the development of effective treatments. It also has become clear that the NLRP3 inflammasome plays a critical role in innate immune defense and therefore has wider implications for other inflammatory disease states
    • …
    corecore