2,609 research outputs found

    Estimating model evidence using data assimilation

    Get PDF
    We review the field of data assimilation (DA) from a Bayesian perspective and show that, in addition to its by now common application to state estimation, DA may be used for model selection. An important special case of the latter is the discrimination between a factual model–which corresponds, to the best of the modeller's knowledge, to the situation in the actual world in which a sequence of events has occurred–and a counterfactual model, in which a particular forcing or process might be absent or just quantitatively different from the actual world. Three different ensemble‐DA methods are reviewed for this purpose: the ensemble Kalman filter (EnKF), the ensemble four‐dimensional variational smoother (En‐4D‐Var), and the iterative ensemble Kalman smoother (IEnKS). An original contextual formulation of model evidence (CME) is introduced. It is shown how to apply these three methods to compute CME, using the approximated time‐dependent probability distribution functions (pdfs) each of them provide in the process of state estimation. The theoretical formulae so derived are applied to two simplified nonlinear and chaotic models: (i) the Lorenz three‐variable convection model (L63), and (ii) the Lorenz 40‐variable midlatitude atmospheric dynamics model (L95). The numerical results of these three DA‐based methods and those of an integration based on importance sampling are compared. It is found that better CME estimates are obtained by using DA, and the IEnKS method appears to be best among the DA methods. Differences among the performance of the three DA‐based methods are discussed as a function of model properties. Finally, the methodology is implemented for parameter estimation and for event attribution

    A simple model for heterogeneous flows of yield stress fluids

    Full text link
    Various experiments evidence spatial heterogeneities in sheared yield stress fluids. To account for heterogeneities in the velocity gradient direction, we use a simple model corresponding to a non-monotonous local constitutive curve and study a simple shear geometry. Different types of boundary conditions are considered. Under controlled macroscopic shear stress Σ\Sigma, we find homogeneous flow in the bulk and a hysteretic macroscopic stress - shear rate curve. Under controlled macroscopic shear rate Γ˙\dot{\Gamma}, shear banding is predicted within a range of values of Γ˙\dot{\Gamma}. For small shear rates, stick slip can also be observed. These qualitative behaviours are robust when changing the boundary conditions.Comment: 13 pages, 13 figure

    «Ne pas traduire, c'est traduire encore». Et si la non-traduction était un procédé de traduction ?

    Get PDF
    This paper shows the manifold aspects of the non-translation phenomenon : besides shortened and summarized versions, which alter the source text in a quantitative way, non-translation can also have a qualitative effect, for instance when sociocultural references are erased. If non-translation is an infringement of the translator's duties, in some cases it can be a very fruitful solution. There is a lack of literature on the subject, and although it is often mentioned briefly, this phenomenon has never been tackled seriously

    Microscopic Derivation of Non-Markovian Thermalization of a Brownian Particle

    Full text link
    In this paper, the first microscopic approach to the Brownian motion is developed in the case where the mass density of the suspending bath is of the same order of magnitude as that of the Brownian (B) particle. Starting from an extended Boltzmann equation, which describes correctly the interaction with the fluid, we derive systematicaly via the multiple time-scale analysis a reduced equation controlling the thermalization of the B particle, i.e. the relaxation towards the Maxwell distribution in velocity space. In contradistinction to the Fokker-Planck equation, the derived new evolution equation is non-local both in time and in velocity space, owing to correlated recollision events between the fluid and particle B. In the long-time limit, it describes a non-markovian generalized Ornstein-Uhlenbeck process. However, in spite of this complex dynamical behaviour, the Stokes-Einstein law relating the friction and diffusion coefficients is shown to remain valid. A microscopic expression for the friction coefficient is derived, which acquires the form of the Stokes law in the limit where the mean-free in the gas is small compared to the radius of particle B.Comment: 28 pages, no figure, submitted to Journal of Statistical Physic

    Quark deconfinement in neutron star cores: The effects of spin-down

    Full text link
    We study the role of spin-down in driving quark deconfinement in the high density core of isolated neutron stars. Assuming spin-down to be solely due to magnetic braking, we obtain typical timescales to quark deconfinement for neutron stars that are born with Keplerian frequencies. Employing different equations of state (EOS), we determine the minimum and maximum neutron star masses that will allow for deconfinement via spin-down only. We find that the time to reach deconfinement is strongly dependent on the magnetic field and that this time is least for EOS that support the largest minimum mass at zero spin, unless rotational effects on stellar structure are large. For a fiducial critical density of 5ρ05\rho_0 for the transition to the quark phase (ρ0=2.5×1014\rho_0=2.5\times10^{14}g/cm3^3 is the saturation density of nuclear matter), we find that neutron stars lighter than 1.5M⊙1.5M_{\odot} cannot reach a deconfined phase. Depending on the EOS, neutron stars of more than 1.5M⊙1.5M_{\odot} can enter a quark phase only if they are spinning faster than about 3 milliseconds as observed now, whereas larger spin periods imply that they are either already quark stars or will never become one.Comment: 4 pages, 4 figures, submitted to ApJ

    Possibility to study eta-mesic nuclei and photoproduction of slow eta-mesons at the GRAAL facility

    Full text link
    A new experiment is proposed with the aim to study eta-mesic nuclei and low-energy interactions of eta with nuclei. Two decay modes of eta produced by a photon beam inside a nucleus will be observed, namely a collisional decay \eta N \to \pi N inside the nucleus and the radiative decay \eta \to \gamma \gamma outside. In addition, a collisional decay of stopped S_{11}(1535) resonance inside the nucleus, S_{11}(1535) N \to N N, will be studied. The experiment can be performed using the tagged photon beam at ESRF with the end-point energy 1000 MeV and the GRAAL detector which includes a high-resolution BGO calorimeter and a large acceptance lead-scintillator time-of-flight wall. Some results of simulation and estimates of yields are given.Comment: 20 pages, 19 figure

    Effective slip over superhydrophobic surfaces in thin channels

    Full text link
    Superhydrophobic surfaces reduce drag by combining hydrophobicity and roughness to trap gas bubbles in a micro- and nanoscopic texture. Recent work has focused on specific cases, such as striped grooves or arrays of pillars, with limited theoretical guidance. Here, we consider the experimentally relevant limit of thin channels and obtain rigorous bounds on the effective slip length for any two-component (e.g. low-slip and high-slip) texture with given area fractions. Among all anisotropic textures, parallel stripes attain the largest (or smallest) possible slip in a straight, thin channel for parallel (or perpendicular) orientation with respect to the mean flow. For isotropic (e.g. chessboard or random) textures, the Hashin-Strikman conditions further constrain the effective slip. These results provide a framework for the rational design of superhydrophobic surfaces.Comment: 4+ page

    Stellar Mass to Halo Mass Scaling Relation for X-ray Selected Low Mass Galaxy Clusters and Groups out to Redshift z≈1z\approx1

    Full text link
    We present the stellar mass-halo mass scaling relation for 46 X-ray selected low-mass clusters or groups detected in the XMM-BCS survey with masses 2×1013M⊙â‰ČM500â‰Č2.5×1014M⊙2\times10^{13}M_{\odot}\lesssim M_{500}\lesssim2.5\times10^{14}M_{\odot} at redshift 0.1≀z≀1.020.1\le z \le1.02. The cluster binding masses M500M_{500} are inferred from the measured X-ray luminosities \Lx, while the stellar masses M⋆M_{\star} of the galaxy populations are estimated using near-infrared imaging from the SSDF survey and optical imaging from the BCS survey. With the measured \Lx\ and stellar mass M⋆M_{\star}, we determine the best fit stellar mass-halo mass relation, accounting for selection effects, measurement uncertainties and the intrinsic scatter in the scaling relation. The resulting mass trend is M⋆∝M5000.69±0.15M_{\star}\propto M_{500}^{0.69\pm0.15}, the intrinsic (log-normal) scatter is σln⁥M⋆∣M500=0.36−0.06+0.07\sigma_{\ln M_{\star}|M_{500}}=0.36^{+0.07}_{-0.06}, and there is no significant redshift trend M⋆∝(1+z)−0.04±0.47M_{\star}\propto (1+z)^{-0.04\pm0.47}, although the uncertainties are still large. We also examine M⋆M_{\star} within a fixed projected radius of 0.50.5~Mpc, showing that it provides a cluster binding mass proxy with intrinsic scatter of ≈93%\approx93\% (1σ\sigma in M500M_{500}). We compare our M⋆=M⋆(M500,z)M_{\star}=M_{\star}(M_{500}, z) scaling relation from the XMM-BCS clusters with samples of massive, SZE-selected clusters (M500≈6×1014M⊙M_{500}\approx6\times10^{14}M_{\odot}) and low mass NIR-selected clusters (M500≈1014M⊙M_{500}\approx10^{14}M_{\odot}) at redshift 0.6â‰Čzâ‰Č1.30.6\lesssim z \lesssim1.3. After correcting for the known mass measurement systematics in the compared samples, we find that the scaling relation is in good agreement with the high redshift samples, suggesting that for both groups and clusters the stellar content of the galaxy populations within R500R_{500} depends strongly on mass but only weakly on redshift out to z≈1z\approx1.Comment: 15 pages, 10 figures. Accepted for publication in MNRA

    Diffusion in pores and its dependence on boundary conditions

    Full text link
    We study the influence of the boundary conditions at the solid liquid interface on diffusion in a confined fluid. Using an hydrodynamic approach, we compute numerical estimates for the diffusion of a particle confined between two planes. Partial slip is shown to significantly influence the diffusion coefficient near a wall. Analytical expressions are derived in the low and high confinement limits, and are in good agreement with numerical results. These calculations indicate that diffusion of tagged particles could be used as a sensitive probe of the solid-liquid boundary conditions.Comment: soumis \`a J.Phys. Cond. Matt. special issue on "Diffusion in Liquids, Polymers, Biophysics and Chemical Dynamics

    Stable tubule only polypeptides (STOP) proteins co-aggregate with spheroid neurofilaments in amyotrophic lateral sclerosis

    Get PDF
    A major cytopathological hallmark of amyotrophic lateral sclerosis (ALS) is the presence of axonal spheroids containing abnormally accumulated neurofilaments. The mechanism of their formation, their contribution to the disease, and the possibility of other co-aggregated components are still enigmatic. Here we analyze the composition of such lesions with special reference to stable tubule only polypeptide (STOP), a protein responsible for microtubule cold stabilization. In normal human brain and spinal cord, the distribution of STOP proteins is uniform between the cytoplasm and neurites of neurons. However, all the neurofilament-rich spheroids present in the tissues of affected patients are intensely labeled with 3 different anti-STOP antibodies. Moreover, when neurofilaments and microtubules are isolated from spinal cord and brain, STOP proteins are systematically co-purified with neurofilaments. By SDS-PAGE analysis, no alteration of the migration profile of STOP proteins is observed in pathological samples. Other microtubular proteins, like tubulin or kinesin, are inconstantly present in spheroids, suggesting that a microtubule destabilizing process may be involved in the pathogenesis of ALS. These results indicate that the selective co-aggregation of neurofilament and STOP proteins represent a new cytopathological marker for spheroids
    • 

    corecore