34 research outputs found

    INDUSTRIAL ACCIDENTS SURVEY: METHODOLOGICAL PROPOSITION ETUDE DES ACCIDENTS INDUSTRIELS: PROPOSITION METHODOLOGIQUE

    Get PDF
    The survey of work accidents requires a very important information flux which is possible to structure only through amethodological proceedure. This study confirms this proposal and suggests a way of survey of industrial accidents that permitsthe organization of information related to work accidents and the specific methods allowing the survey of this type ofindustrial incidences.Keywords: technological and human factors methods of survey, causes tree

    Reactive Oxygen Species in Chronic Obstructive Pulmonary Disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) includes chronic bronchitis and emphysema. Environmental exposure, primarily cigarette smoking, can cause high oxidative stress and is the main factor of COPD development. Cigarette smoke also contributes to the imbalance of oxidant/antioxidant due to exogenous reactive oxygen species (ROS). Moreover, endogenously released ROS during the inflammatory process and mitochondrial dysfunction may contribute to this disease progression. ROS and reactive nitrogen species (RNS) can oxidize different biomolecules such as DNA, proteins, and lipids leading to epithelial cell injury and death. Various detoxifying enzymes and antioxidant defense systems can be involved in ROS removal. In this review, we summarize the main findings regarding the biological role of ROS, which may contribute to COPD development, and cytoprotective mechanisms against this disease progression

    Reactive Oxygen Species in Chronic Obstructive Pulmonary Disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) includes chronic bronchitis and emphysema. Environmental exposure, primarily cigarette smoking, can cause high oxidative stress and is the main factor of COPD development. Cigarette smoke also contributes to the imbalance of oxidant/antioxidant due to exogenous reactive oxygen species (ROS). Moreover, endogenously released ROS during the inflammatory process and mitochondrial dysfunction may contribute to this disease progression. ROS and reactive nitrogen species (RNS) can oxidize different biomolecules such as DNA, proteins, and lipids leading to epithelial cell injury and death. Various detoxifying enzymes and antioxidant defense systems can be involved in ROS removal. In this review, we summarize the main findings regarding the biological role of ROS, which may contribute to COPD development, and cytoprotective mechanisms against this disease progression

    End-processing during non-homologous end-joining: a role for exonuclease 1

    Get PDF
    Non-homologous end-joining (NHEJ) is a critical error-prone pathway of double strand break repair. We recently showed that tyrosyl DNA phosphodiesterase 1 (Tdp1) regulates the accuracy of NHEJ repair junction formation in yeast. We assessed the role of other enzymes in the accuracy of junction formation using a plasmid repair assay. We found that exonuclease 1 (Exo1) is important in assuring accurate junction formation during NHEJ. Like tdp1Δ mutants, exo1Δ yeast cells repairing plasmids with 5′-extensions can produce repair junctions with templated insertions. We also found that exo1Δ mutants have a reduced median size of deletions when joining DNA with blunt ends. Surprisingly, exo1Δ pol4Δ mutants repair blunt ends with a very low frequency of deletions. This result suggests that there are multiple pathways that process blunt ends prior to end-joining. We propose that Exo1 acts at a late stage in end-processing during NHEJ. Exo1 can reverse nucleotide additions occurring due to polymerization, and may also be important for processing ends to expose microhomologies needed for NHEJ. We propose that accurate joining is controlled at two steps, a first step that blocks modification of DNA ends, which requires Tdp1, and a second step that occurs after synapsis that requires Exo1

    SUMO modification of the neuroprotective protein TDP1 facilitates chromosomal single-strand break repair

    Get PDF
    Breaking and sealing one strand of DNA is an inherent feature of chromosome metabolism to overcome torsional barriers. Failure to reseal broken DNA strands results in protein-linked DNA breaks, causing neurodegeneration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1), which removes stalled topoisomerase 1 peptides from DNA termini. Here we show that TDP1 is a substrate for modification by the small ubiquitin-like modifier SUMO. We purify SUMOylated TDP1 from mammalian cells and identify the SUMOylation site as lysine 111. While SUMOylation exhibits no impact on TDP1 catalytic activity, it promotes its accumulation at sites of DNA damage. A TDP1 SUMOylation-deficient mutant displays a reduced rate of repair of chromosomal single-strand breaks arising from transcription-associated topoisomerase 1 activity or oxidative stress. These data identify a role for SUMO during single-strand break repair, and suggest a mechanism for protecting the nervous system from genotoxic stress

    SUMO-Targeted Ubiquitin Ligase, Rad60, and Nse2 SUMO Ligase Suppress Spontaneous Top1–Mediated DNA Damage and Genome Instability

    Get PDF
    Through as yet undefined proteins and pathways, the SUMO-targeted ubiquitin ligase (STUbL) suppresses genomic instability by ubiquitinating SUMO conjugated proteins and driving their proteasomal destruction. Here, we identify a critical function for fission yeast STUbL in suppressing spontaneous and chemically induced topoisomerase I (Top1)–mediated DNA damage. Strikingly, cells with reduced STUbL activity are dependent on tyrosyl–DNA phosphodiesterase 1 (Tdp1). This is notable, as cells lacking Tdp1 are largely aphenotypic in the vegetative cell cycle due to the existence of alternative pathways for the removal of covalent Top1–DNA adducts (Top1cc). We further identify Rad60, a SUMO mimetic and STUbL-interacting protein, and the SUMO E3 ligase Nse2 as critical Top1cc repair factors in cells lacking Tdp1. Detection of Top1ccs using chromatin immunoprecipitation and quantitative PCR shows that they are elevated in cells lacking Tdp1 and STUbL, Rad60, or Nse2 SUMO ligase activity. These unrepaired Top1ccs are shown to cause DNA damage, hyper-recombination, and checkpoint-mediated cell cycle arrest. We further determine that Tdp1 and the nucleotide excision repair endonuclease Rad16-Swi10 initiate the major Top1cc repair pathways of fission yeast. Tdp1-based repair is the predominant activity outside S phase, likely acting on transcription-coupled Top1cc. Epistasis analyses suggest that STUbL, Rad60, and Nse2 facilitate the Rad16-Swi10 pathway, parallel to Tdp1. Collectively, these results reveal a unified role for STUbL, Rad60, and Nse2 in protecting genome stability against spontaneous Top1-mediated DNA damage

    Predictive modelling of soils’ hydraulic conductivity using artificial neural network and multiple linear regression

    Get PDF
    As a result of heterogeneity nature of soils and variation in its hydraulic conductivity over several orders of magnitude for various soil types from fine-grained to coarse-grained soils, predictive methods to estimate hydraulic conductivity of soils from properties considered more easily obtainable have now been given an appropriate consideration. This study evaluates the performance of artificial neural network (ANN) being one of the popular computational intelligence techniques in predicting hydraulic conductivity of wide range of soil types and compared with the traditional multiple linear regression (MLR). ANN and MLR models were developed using six input variables. Results revealed that only three input variables were statistically significant in MLR model development. Performance evaluations of the developed models using determination coefficient and mean square error show that the prediction capability of ANN is far better than MLR. In addition, comparative study with available existing models shows that the developed ANN and MLR in this study performed relatively better

    Reactive Oxygen Species in Chronic Obstructive Pulmonary Disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) includes chronic bronchitis and emphysema. Environmental exposure, primarily cigarette smoking, can cause high oxidative stress and is the main factor of COPD development. Cigarette smoke also contributes to the imbalance of oxidant/antioxidant due to exogenous reactive oxygen species (ROS). Moreover, endogenously released ROS during the inflammatory process and mitochondrial dysfunction may contribute to this disease progression. ROS and reactive nitrogen species (RNS) can oxidize different biomolecules such as DNA, proteins, and lipids leading to epithelial cell injury and death. Various detoxifying enzymes and antioxidant defense systems can be involved in ROS removal. In this review, we summarize the main findings regarding the biological role of ROS, which may contribute to COPD development, and cytoprotective mechanisms against this disease progression

    Trace elements in soils and vegetables from market gardens of (peri)urban areas in Marrakech city

    No full text
    Trace elements in soils and vegetables from market gardens of (peri)urban areas in Marrakech city. 9. International Congress on Soils of Urban, Industrial, Traffic, Mining and Military Areas (SUITMA
    corecore