6,806 research outputs found
The Changing Narratives of Death, Dying, and HIV in the United Kingdom
Death and infection were closely linked from the start of the HIV epidemic, until successful treatments became available. The initial impact of mostly young, gay men dying from HIV was powerful in shaping UK responses. Neoliberal discourses developed at the same time, particularly focusing on how citizens (rather than the state) should take responsibility to improve health. Subsequently “successful ageing” became an allied discourse, further marginalising death discussions. Our study reflected on a broad range of meanings around death within the historical UK epidemic, to examine how dying narratives shape contemporary HIV experiences. Fifty-one participants including people living with HIV, professionals, and activists were recruited for semistructured interviews. Assuming a symbolic interactionist framework, analysis highlighted how HIV deaths were initially experienced as not only traumatic but also energizing, leading to creativity. With effective antiretrovirals, dying changed shape (e.g., loss of death literacy), and better integration of palliative care was recommended
A new approach to the inverse problem for current mapping in thin-film superconductors
A novel mathematical approach has been developed to complete the inversion of
the Biot-Savart law in one- and two-dimensional cases from measurements of the
perpendicular component of the magnetic field using the well-developed
Magneto-Optical Imaging technique. Our approach, especially in the 2D case, is
provided in great detail to allow a straightforward implementation as opposed
to those found in the literature. Our new approach also refines our previous
results for the 1D case [Johansen et al., Phys. Rev. B 54, 16264 (1996)], and
streamlines the method developed by Jooss et al. [Physica C 299, 215 (1998)]
deemed as the most accurate if compared to that of Roth et al. [J. Appl. Phys.
65, 361 (1989)]. We also verify and streamline the iterative technique, which
was developed following Laviano et al. [Supercond. Sci. Technol. 16, 71 (2002)]
to account for in-plane magnetic fields caused by the bending of the applied
magnetic field due to the demagnetising effect. After testing on
magneto-optical images of a high quality YBa2Cu3O7 superconducting thin film,
we show that the procedure employed is effective
Lattice density-functional theory of surface melting: the effect of a square-gradient correction
I use the method of classical density-functional theory in the
weighted-density approximation of Tarazona to investigate the phase diagram and
the interface structure of a two-dimensional lattice-gas model with three
phases -- vapour, liquid, and triangular solid. While a straightforward
mean-field treatment of the interparticle attraction is unable to give a stable
liquid phase, the correct phase diagram is obtained when including a suitably
chosen square-gradient term in the system grand potential. Taken this theory
for granted, I further examine the structure of the solid-vapour interface as
the triple point is approached from low temperature. Surprisingly, a novel
phase (rather than the liquid) is found to grow at the interface, exhibiting an
unusually long modulation along the interface normal. The conventional
surface-melting behaviour is recovered only by artificially restricting the
symmetries being available to the density field.Comment: 16 pages, 6 figure
Depletion potential in hard-sphere mixtures: theory and applications
We present a versatile density functional approach (DFT) for calculating the
depletion potential in general fluid mixtures. In contrast to brute force DFT,
our approach requires only the equilibrium density profile of the small
particles {\em before} the big (test) particle is inserted. For a big particle
near a planar wall or a cylinder or another fixed big particle the relevant
density profiles are functions of a single variable, which avoids the numerical
complications inherent in brute force DFT. We implement our approach for
additive hard-sphere mixtures. By investigating the depletion potential for
high size asymmetries we assess the regime of validity of the well-known
Derjaguin approximation for hard-sphere mixtures and argue that this fails. We
provide an accurate parametrization of the depletion potential in hard-sphere
fluids which should be useful for effective Hamiltonian studies of phase
behavior and colloid structure
Simulation of hurricane response to suppression of warm rain by sub-micron aerosols
The feasibility of hurricane modification was investigated for hurricane Katrina using the Weather Research and Forecasting Model (WRF). The possible impact of seeding of clouds with submicron cloud condensation nuclei (CCN) on hurricane structure and intensity as measured by nearly halving of the area covered by hurricane force winds was simulated by "turning&ndash;off" warm rain formation in the clouds at Katrina's periphery (where wind speeds were less than 22 m s<sup>&minus;1</sup>). This simplification of the simulation of aerosol effects is aimed at evaluating the largest possible response. This resulted in the weakening of the hurricane surface winds compared to the "non-seeded" simulated storm during the first 24 h within the entire tropical cyclone (TC) area compared to a control simulation without warm rain suppression. Later, the seeding-induced evaporative cooling at the TC periphery led to a shrinking of the eye and hence to some increase in the wind within the small central area of the TC. Yet, the overall strength of the hurricane, as defined by the area covered by hurricane force winds, decreased in response to the suppressed warm rain at the periphery, as measured by a 25% reduction in the radius of hurricane force winds. In a simulation with warm rain suppression throughout the hurricane, the radius of the hurricane force winds was reduced by more than 42%, and although the diameter of the eye shrunk even further the maximum winds weakened. This shows that the main mechanism by which suppressing warm rain weakens the TC is the low level evaporative cooling of the un-precipitated cloud drops and the added cooling due to melting of precipitation that falls from above
Density Functional for Anisotropic Fluids
We propose a density functional for anisotropic fluids of hard body
particles. It interpolates between the well-established geometrically based
Rosenfeld functional for hard spheres and the Onsager functional for elongated
rods. We test the new approach by calculating the location of the the
nematic-isotropic transition in systems of hard spherocylinders and hard
ellipsoids. The results are compared with existing simulation data. Our
functional predicts the location of the transition much more accurately than
the Onsager functional, and almost as good as the theory by Parsons and Lee. We
argue that it might be suited to study inhomogeneous systems.Comment: To appear in J. Physics: Condensed Matte
Regulation of Gonadotropin-Releasing Hormone (GnRH)-Receptor Gene Expression in Tilapia: Effect of GnRH and Dopamine
The present work was designed to study certain aspects of the endocrine regulation of gonadotropin-releasing hormone receptor (GnRH-R) in the pituitary of the teleost fish tilapia. A GnRH-R was cloned from the pituitary of hybrid tilapia (taGnRH-R) and was identified as a typical seven-transmembrane receptor. Northern blot analysis revealed a single GnRH-R transcript in the pituitary of approximately 2.3 kilobases. The taGnRH-R mRNA levels were significantly higher in females than in males. Injection of the salmon GnRH analog (sGnRHa; 5–50 μg/kg) increased the steady-state levels of taGnRH-R mRNA, with the highest response recorded at 25 μg/kg and at 36 h. At the higher dose of sGnRHa (50 μg/kg), taGnRH-R transcript appeared to be down-regulated. Exposure of tilapia pituitary cells in culture to graded doses (0.1–100 nM) of seabream (sbGnRH = GnRH I), chicken II (cGnRH II), or salmon GnRH (sGnRH = GnRH III) resulted in a significant increase in taGnRH-R mRNA levels. The highest levels of both LH release and taGnRH-R mRNA levels were recorded after exposure to cGnRH II and the lowest after exposure to sbGnRH. The dopamine-agonist quinpirole suppressed LH release and mRNA levels of taGnRH-R, indicating an inhibitory effect on GnRH-R synthesis. Collectively, these data provide evidence that GnRH in tilapia can up- regulate, whereas dopamine down-regulates, taGnRH-R mRNA levels
Fundamental measure theory for lattice fluids with hard core interactions
We present the extension of Rosenfeld's fundamental measure theory to lattice
models by constructing a density functional for d-dimensional mixtures of
parallel hard hypercubes on a simple hypercubic lattice. The one-dimensional
case is exactly solvable and two cases must be distinguished: all the species
with the same lebgth parity (additive mixture), and arbitrary length parity
(nonadditive mixture). At the best of our knowledge, this is the first time
that the latter case is considered. Based on the one-dimensional exact
functional form, we propose the extension to higher dimensions by generalizing
the zero-dimensional cavities method to lattice models. This assures the
functional to have correct dimensional crossovers to any lower dimension,
including the exact zero-dimensional limit. Some applications of the functional
to particular systems are also shown.Comment: 22 pages, 7 figures, needs IOPP LaTeX styles file
Theory of asymmetric non-additive binary hard-sphere mixtures
We show that the formal procedure of integrating out the degrees of freedom
of the small spheres in a binary hard-sphere mixture works equally well for
non-additive as it does for additive mixtures. For highly asymmetric mixtures
(small size ratios) the resulting effective Hamiltonian of the one-component
fluid of big spheres, which consists of an infinite number of many-body
interactions, should be accurately approximated by truncating after the term
describing the effective pair interaction. Using a density functional treatment
developed originally for additive hard-sphere mixtures we determine the zero,
one, and two-body contribution to the effective Hamiltonian. We demonstrate
that even small degrees of positive or negative non-additivity have significant
effect on the shape of the depletion potential. The second virial coefficient
, corresponding to the effective pair interaction between two big spheres,
is found to be a sensitive measure of the effects of non-additivity. The
variation of with the density of the small spheres shows significantly
different behavior for additive, slightly positive and slightly negative
non-additive mixtures. We discuss the possible repercussions of these results
for the phase behavior of binary hard-sphere mixtures and suggest that
measurements of might provide a means of determining the degree of
non-additivity in real colloidal mixtures
- …