288 research outputs found

    Evaluating the Potential of Using 5-Azacytidine as an Epimutagen

    Get PDF
    A number of early flowering lines were induced when 5-azacytidine was applied to germinating flax (Linum usitatissimum L.) seed. The genetics of these lines indicate that the induced changes are epigenetic and probably result from demethylation of the genomic DNA at loci that affect flowering age. Although the growth and development of three stable early flowering lines are altered and the percentage of filled seed was reduced in all three lines compared with controls, measures of seed productivity demonstrated that harvest index was unaffected in two of the lines. In the third, harvest index was lower than normal and both seed set per capsule and seed mass per 100 seed were reduced. Furthermore, six generations after induction this line began to display relatively high levels of polyembryony. The late appearance of this twinning and other aspects related to working with lines induced by 5-azacytidine and using 5-azacytidine as an epimutagen are discussed

    Fate and trophic transfer of rare earth elements in temperate lake food webs

    Full text link
    Many mining projects targeting rare earth elements (REE) are in development in North America, but the background concentrations and trophic transfer of these elements in natural environments have not been well characterized. We sampled abiotic and food web components in 14 Canadian temperate lakes unaffected by mines to assess the natural ecosystem fate of REE. Individual REE and total REE concentrations (sum of individual element concentrations, ÎŁREE) were strongly related with each other throughout different components of lake food webs. Dissolved organic carbon and dissolved oxygen in the water column, as well as ÎŁREE in sediments, were identified as potential drivers of aqueous ÎŁREE. Log10 of median bioaccumulation factors ranged from 1.3, 3.7, 4.0, and 4.4 L/kg (wet weight) for fish muscle, zooplankton, predatory invertebrates, and nonpredatory invertebrates, respectively. [ÎŁREE] in fish, benthic macroinvertebrates, and zooplankton declined as a function of their trophic position, as determined by functional feeding groups and isotopic signatures of nitrogen (ÎŽ15N), indicating that REE were subject to trophic dilution. Low concentrations of REE in freshwater fish muscle compared to their potential invertebrate prey suggest that fish fillet consumption is unlikely to be a significant source of REE to humans in areas unperturbed by mining activities. However, other fish predators (e.g., piscivorous birds and mammals) may accumulate REE from whole fish as they are more concentrated than muscle. Overall, this study provides key information on the baseline concentrations and trophic patterns for REE in freshwater temperate lakes in Quebec, Canada

    Finding and Resolving Security Misusability with Misusability Cases

    Get PDF
    Although widely used for both security and usability concerns, scenarios used in security design may not necessarily inform the design of usability, and vice- versa. One way of using scenarios to bridge security and usability involves explicitly describing how design deci- sions can lead to users inadvertently exploiting vulnera- bilities to carry out their production tasks. This paper describes how misusability cases, scenarios that describe how design decisions may lead to usability problems sub- sequently leading to system misuse, address this problem. We describe the related work upon which misusability cases are based before presenting the approach, and illus- trating its application using a case study example. Finally, we describe some findings from this approach that further inform the design of usable and secure systems

    Critical point network for drainage between rough surfaces

    Get PDF
    In this paper, we present a network method for computing two-phase flows between two rough surfaces with significant contact areas. Low-capillary number drainage is investigated here since one-phase flows have been previously investigated in other contributions. An invasion percolation algorithm is presented for modeling slow displacement of a wetting fluid by a non wetting one between two rough surfaces. Short-correlated Gaussian process is used to model random rough surfaces.The algorithm is based on a network description of the fracture aperture field. The network is constructed from the identification of critical points (saddles and maxima) of the aperture field. The invasion potential is determined from examining drainage process in a flat mini-channel. A direct comparison between numerical prediction and experimental visualizations on an identical geometry has been performed for one realization of an artificial fracture with a moderate fractional contact area of about 0.3. A good agreement is found between predictions and observations

    Identifying Implicit Vulnerabilities through Personas as Goal Models

    Get PDF
    When used in requirements processes and tools, personas have the potential to identify vulnerabilities resulting from misalignment between user expectations and system goals. Typically, however, this potential is unfulfilled as personas and system goals are captured with different mindsets, by different teams, and for different purposes. If personas are visualised as goal models, it may be easier for stakeholders to see implications of their goals being satisfied or denied, and designers to incorporate the creation and analysis of such models into the broader RE tool-chain. This paper outlines a tool-supported approach for finding implicit vulnerabilities from user and system goals by reframing personas as social goal models. We illustrate this approach with a case study where previously hidden vulnerabilities based on human behaviour were identified

    A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow

    Get PDF
    It was discovered in 1995 that, during the spring time, unexpectedly low concentrations of gaseous elemental mercury (GEM) occurred in the Arctic air. This was surprising for a pollutant known to have a long residence time in the atmosphere; however conditions appeared to exist in the Arctic that promoted this depletion of mercury (Hg). This phenomenon is termed atmospheric mercury depletion events (AMDEs) and its discovery has revolutionized our understanding of the cycling of Hg in Polar Regions while stimulating a significant amount of research to understand its impact to this fragile ecosystem. Shortly after the discovery was made in Canada, AMDEs were confirmed to occur throughout the Arctic, sub-Artic and Antarctic coasts. It is now known that, through a series of photochemically initiated reactions involving halogens, GEM is converted to a more reactive species and is subsequently associated to particles in the air and/or deposited to the polar environment. AMDEs are a means by which Hg is transferred from the atmosphere to the environment that was previously unknown. In this article we review Hg research taken place in Polar Regions pertaining to AMDEs, the methods used to collect Hg in different environmental media, research results of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDEs, gaps in our current knowledge and the future impacts that AMDEs may have on polar environments. The research presented has shown that while considerable improvements in methodology to measure Hg have been made but the main limitation remains knowing the speciation of Hg in the various media. The processes that drive AMDEs and how they occur are discussed. As well, the role that the snow pack and the sea ice play in the cycling of Hg is presented. It has been found that deposition of Hg from AMDEs occurs at marine coasts and not far inland and that a fraction of the deposited Hg does not remain in the same form in the snow. Kinetic studies undertaken have demonstrated that bromine is the major oxidant depleting Hg in the atmosphere. Modeling results demonstrate that there is a significant deposition of Hg to Polar Regions as a result of AMDEs. Models have also shown that Hg is readily transported to the Arctic from source regions, at times during springtime when this environment is actively transforming Hg from the atmosphere to the snow and ice surfaces. The presence of significant amounts of methyl Hg in snow in the Arctic surrounding AMDEs is important because this species is the link between the environment and impacts to wildlife and humans. Further, much work on methylation and demethylation processes has occurred but these processes are not yet fully understood. Recent changes in the climate and sea ice cover in Polar Regions are likely to have strong effects on the cycling of Hg in this environment; however more research is needed to understand Hg processes in order to formulate meaningful predictions of these changes

    Enhancing Goal-based Requirements Consistency: an Argumentation-based Approach

    Get PDF
    International audienceRequirements engineering research has for long recognized the leading role of goals as requirement artifacts during the requirements engineering specification processes. Given the large number of artifacts created during the requirements specification and the continuous evolution of these artifacts, reasoning about them remains a challenging task. Moreover, the rising complexity of the target domain under consideration during the requirements engineering process as well as the growth of geographically distributed projects explain why the number of collected requirements as well as their complexity also increase. In this context, providing support to stakeholders in achieving a common understanding of a set of goal-based requirements, in consolidating them and keeping them consistent over time is another challenging task. In this paper, we propose an approach to detect consistent sets of goal-based requirements and maintain their consistency over time. Our approach relies on argumentation theory which allows to detect the conflicts among elements called arguments. In particular, we rely on meta-argumentation, which instantiates abstract argumentation frameworks, where requirements are represented as arguments and the standard Dung-like argumentation framework is extended with additional relations between goal-based requirements

    A consensus protocol for the recovery of mercury methylation genes from metagenomes

    Get PDF
    Mercury (Hg) methylation genes (hgcAB) mediate the formation of the toxic methylmercury and have been identified from diverse environments, including freshwater and marine ecosystems, Arctic permafrost, forest and paddy soils, coal-ash amended sediments, chlor-alkali plants discharges and geothermal springs. Here we present the first attempt at a standardized protocol for the detection, identification and quantification of hgc genes from metagenomes. Our Hg-cycling microorganisms in aquatic and terrestrial ecosystems (Hg-MATE) database, a catalogue of hgc genes, provides the most accurate information to date on the taxonomic identity and functional/metabolic attributes of microorganisms responsible for Hg methylation in the environment. Furthermore, we introduce "marky-coco", a ready-to-use bioinformatic pipeline based on de novo single-metagenome assembly, for easy and accurate characterization of hgc genes from environmental samples. We compared the recovery of hgc genes from environmental metagenomes using the marky-coco pipeline with an approach based on coassembly of multiple metagenomes. Our data show similar efficiency in both approaches for most environments except those with high diversity (i.e., paddy soils) for which a coassembly approach was preferred. Finally, we discuss the definition of true hgc genes and methods to normalize hgc gene counts from metagenomes

    Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila

    Get PDF
    Legionella pneumophila is a bacterial pathogen that utilises a Type IV secretion (T4S) system to inject effector proteins into human macrophages. Essential to the recruitment and delivery of effectors to the T4S machinery is the membrane-embedded T4 coupling complex (T4CC). Here, we purify an intact T4CC from the Legionella membrane. It contains the DotL ATPase, the DotM and DotN proteins, the chaperone module IcmSW, and two previously uncharacterised proteins, DotY and DotZ. The atomic resolution structure reveals a DotLMNYZ hetero-pentameric core from which the flexible IcmSW module protrudes. Six of these hetero-pentameric complexes may assemble into a 1.6-MDa hexameric nanomachine, forming an inner membrane channel for effectors to pass through. Analysis of multiple cryo EM maps, further modelling and mutagenesis provide working models for the mechanism for binding and delivery of two essential classes of Legionella effectors, depending on IcmSW or DotM, respectively
    • 

    corecore