47 research outputs found

    Statistical Properties of Strain and Rotation Tensors in Geodetic Network

    Get PDF
    This article deals with the characteristics of deformation of a body or a figure represented by discrete points of geodetic network. In each point of geodetic network kinematic quantities are considered normal strain, shear strain, and rotation. They are computed from strain and rotation tensors represented by displacement gradient matrix on the basis of known point displacement vector. Deformation analysis requires the appropriate treatment of kinematic quantities. Thus statistical properties of each quantity in a single point of geodetic network have to be known. Empirical results have shown that statistical properties are strongly related to the orientation in single point and local geometry of the geodetic network. Based on the known probability distribution of kinematic quantities the confidence areas for each quantity in a certain point can be defined. Based on this we can carry out appropriate statistical testing and decide whether the deformation of network in each point is statistically significant or not. On the other hand, we are able to ascertain the quality of the geometry of the geodetic network. The known characteristics of the probability distributions of two strain parameters and rotation in each point can serve as useful tools in the procedures of optimizing the geometry of the geodetic networks

    History-Dependent Patterns in Randomly Perturbed Nematic Liquid Crystals

    Get PDF
    We study the characteristics of nematic structures in a randomly perturbed nematic liquid crystal (LC) phase. We focus on the impact of the samples history on the universal behavior. The obtained results are of interest for every randomly perturbed system exhibiting a continuous symmetry-breaking phase transition. A semimicroscopic lattice simulation is used where the LC molecules are treated as cylindrically symmetric, rod-like objects interacting via a Lebwohl-Lasher (LL) interaction. Pure LC systems exhibit a first order phase transition into the orientationally ordered nematic phase at T=Tc on lowering the temperature T. The orientational ordering of LC molecules is perturbed by the quenched, randomly distributed rod-like impurities of concentration p. Their orientation is randomly distributed, and they are coupled with the LC molecules via an LL-type interaction. Only concentrations below the percolation threshold are considered. The key macroscopic characteristics of perturbed LC structures in the symmetry-broken nematic phase are analyzed for two qualitatively different histories at T≪Tc. We demonstrate that, for a weak enough interaction among the LC molecules and impurities, qualitatively different history-dependent states could be obtained. These states could exhibit either short-range, quasi-long-range, or even long-range order

    Annihilation of edge dislocations in smectic A liquid crystals

    No full text
    This paper presents a theoretical study of the annihilation of edge dislocations in the same smectic plane in a bulk smectic-A phase. We use a time-dependent Landau-Ginzburg approach where the smectic ordering is described by the complex order parameter psi( r--> ,t) =eta e(iphi) . This quantity allows both the degree of layering and the position of the layers to be monitored. We are able to follow both precollision and postcollision regimes, and distinguish different early and late behaviors within these regimes. The early precollision regime is driven by changes in the phi ( r--> ) configuration. The relative velocity of the defects is approximately inversely proportional to the interdefect separation distance. In the late precollision regime the symmetry changes within the cores of defects also become influential. Following the defect collision, in the early postcollision stage, bulk layer order is approached exponentially in time. At very late times, however, there seems to be a long-time power-law tail in the order parameter fluctuation relaxation

    Evaluation of phosphatidylserine-dependent antiprothrombin antibody testing for the diagnosis of antiphospholipid syndrome: results of an international multicentre study.

    Get PDF
    OBJECTIVE: A task force of scientists at the International Congress on Antiphospholipid Antibodies recognized that phosphatidylserine-dependent antiprothrombin antibodies (aPS/PT) might contribute to a better identification of antiphospholipid syndrome (APS). Accordingly, initial and replication retrospective, cross-sectional multicentre studies were conducted to ascertain the value of aPS/PT for APS diagnosis. METHODS: In the initial study (eight centres, seven countries), clinical/laboratory data were retrospectively collected. Serum/plasma samples were tested for IgG aPS/PT at Inova Diagnostics (Inova) using two ELISA kits. A replication study (five centres, five countries) was carried out afterwards. RESULTS: In the initial study (n = 247), a moderate agreement between the IgG aPS/PT Inova and MBL ELISA kits was observed (k = 0.598). IgG aPS/PT were more prevalent in APS patients (51%) than in those without (9%), OR 10.8, 95% CI (4.0-29.3), p < 0.0001. Sensitivity, specificity, positive (LR+) and negative (LR-) likelihood ratio of IgG aPS/PT for APS diagnosis were 51%, 91%, 5.9 and 0.5, respectively. In the replication study (n = 214), a moderate/substantial agreement between the IgG aPS/PT results obtained with both ELISA kits was observed (k = 0.630). IgG aPS/PT were more prevalent in APS patients (47%) than in those without (12%), OR 6.4, 95% CI (2.6-16), p < 0.0001. Sensitivity, specificity, LR + and LR- for APS diagnosis were 47%, 88%, 3.9 and 0.6, respectively. CONCLUSIONS: IgG aPS/PT detection is an easily performed laboratory parameter that might contribute to a better and more complete identification of patients with APS.info:eu-repo/semantics/publishedVersio

    Numerical analysis of steric influence on conductivity percolation threshold

    No full text
    We have investigated the influence of the steric properties of conducting particles in a nonconducting host matrix on the conductivity threshold of the material, i.e., the minimum volume fraction of conducting phase for the whole sample to become conducting. A statistical, numerical method is used in which the particles are randomly put, one by one, into the nonconducting host and the conducting path is searched. The particles are allowed to penetrate each other to some extent. Three different types of particle shapes are considered: spherical, cylindrical with rounded ends and asymmetric cuboids with rounded surfaces. We have found that in addition to the anisotropy in the particles' dimensions, the angular distribution of the particles' long axes plays a dominant role in the calculations of the conductivity percolation threshold

    Influence of the geometrical parameters on the conductivity percolation threshold

    No full text
    In our previous work we investigated numerically the influence of the steric properties of conducting particles in a non-conducting host matrix on the electrical conductivity threshold of the material, especially in regard to the shape and orientational order of the particles. In the present work we consider theoretically some additional geometrical aspects of the percolation problem. As regards the percolation threshold itself, we consider three aspects: the probability of inter-penetration of half-soft conducting particles for different penetration depths (penetration probability function), different kinds of inhomogeneous distribution of particles in non-conducting host, size effects, and the agglomeration of conducting particles. We also analyze the size of the conducting-particles' clusters below and above the percolation threshold and compare some characteristic critical exponents with the results in the literature

    Annihilation of edge dislocations in smectic A liquid crystals

    No full text
    This paper presents a theoretical study of the annihilation of edge dislocations in the same smectic plane in a bulk smectic-A phase. We use a time-dependent Landau-Ginzburg approach where the smectic ordering is described by the complex order parameter psi( r--&gt; ,t) =eta e(iphi) . This quantity allows both the degree of layering and the position of the layers to be monitored. We are able to follow both precollision and postcollision regimes, and distinguish different early and late behaviors within these regimes. The early precollision regime is driven by changes in the phi ( r--&gt; ) configuration. The relative velocity of the defects is approximately inversely proportional to the interdefect separation distance. In the late precollision regime the symmetry changes within the cores of defects also become influential. Following the defect collision, in the early postcollision stage, bulk layer order is approached exponentially in time. At very late times, however, there seems to be a long-time power-law tail in the order parameter fluctuation relaxation
    corecore