129 research outputs found

    Energy Efficient Multi-hop routing scheme using Taylor based Gravitational Search Algorithm in Wireless Sensor Networks

    Get PDF
    A group of small sensors can participate in the wireless network infrastructure and make appropriate transmission and communication sensor networks. There are numerous uses for drones, including military, medical, agricultural, and atmospheric monitoring. The power sources available to nodes in WSNs are restricted. Furthermore, because of this, a diverse method of energy availability is required, primarily for communication over a vast distance, for which Multi-Hop (MH) systems are used. Obtaining the optimum routing path between nodes is still a significant problem, even when multi-hop systems reduce the cost of energy needed by every node along the way. As a result, the number of transmissions must be kept to a minimum to provide effective routing and extend the system\u27s lifetime. To solve the energy problem in WSN, Taylor based Gravitational Search Algorithm (TBGSA) is proposed, which combines the Taylor series with a Gravitational search algorithm to discover the best hops for multi-hop routing. Initially, the sensor nodes are categorised as groups or clusters and the maximum capable node can access the cluster head the next action is switching between multiple nodes via a multi-hop manner. Initially, the best (CH) Cluster Head is chosen using the Artificial Bee Colony (ABC) algorithm, and then the data is transmitted utilizing multi-hop routing. The comparison result shows out the extension of networks longevity of the proposed method with the existing EBMRS, MOGA, and DMEERP methods. The network lifetime of the proposed method increased by 13.2%, 21.9% and 29.2% better than DMEERP, MOGA, and EBMRS respectively

    The Influence of Floodplain Restoration on Flow and Sediment Dynamics in an Urban River

    Get PDF
    A study of floodplain sedimentation on a recently restored floodplain is presented. This study uses a two-dimensional hydro-morphodynamic model for predicting flow and suspended sediment dynamics in the downstream of Johnson Creek, the East Lents reach, where the bank of the river has been reconfigured to reconnect to a restored floodplain on a 0.26 km2 (26-ha) site. The simulation scenarios include event-based (10, 50, 100, and 500 year floods) deposition modelling of flood events and long-term modelling using the 64 historical flood events between 1941 and 2014. Simulation results showed that the restored floodplain significantly attenuates the upstream flood peak by up to 25% at the downstream. Results also indicated that approximately 20-30% of sediment from the upstream is deposited on the East Lents floodplain. Further, deposited sediment over the simulated period (1941-2014) is approximately 0.1% of the basin’s flood storage capacity, however the reduction in the storage does not offset the overall flood resilience impact of the flood basin. The sediment conservation at the East Lents flood basin as predicted by the model reduces the annual sediment loading of the Johnson Creek by 1% at the confluence with Willamette River, providing both water quality and flood resilience benefits further downstream

    Spin susceptibility, phase diagram, and quantum criticality in the electron-doped high Tc Superconductor Ba[Fe(1-x)Co(x)]2As2

    Full text link
    We report a systematic investigation of Ba[Fe(1-x)Co(x)]2As2 based on transport and 75-As NMR measurements, and establish the electronic phase diagram. We demonstrate that doping progressively suppresses the uniform spin susceptibility and low frequency spin fluctuations. The optimum superconducting phase emerges at x_c~0.08 when the tendency toward spin ordering completely diminishes. Our findings point toward the presence of a quantum critical point near x_c between the SDW (spin density wave) and superconducting phases.Comment: 5 Figure

    Evaluation of periphyton quantity on different natural substrates in Earthen lined pond

    Get PDF
    Experiments were conducted in outdoor earthen lined pond to study periphyton quantity on three types of natural substrates such as split bamboo pole, coconut coir and coconut shell, which was placed inside the earthen lined pond filled with seawater for duration of 45 days. Observations were made in every 15th day for growth of periphyton both qualitatively and quantitatively on the three natural substrates and physico-chemical properties of selected pond water such as transparency, water temperature, salinity, pH, Dissolved oxygen, Ammonia (NH3-N), Nitrite (NO2-N), Nitrate (NO3-N), BOD and Chlorophyll ‘a’ were recorded during periphyton samplings. The periphy-ton quantity (34562 ± 671 cells / cm2) observed for coconut coir was higher than the split bamboo pole (33104 ± 810 cells / cm2), and coconut shell (21194 ± 872 cells / cm2) in the final day of the experiment. One way ANOVA of the data collected clearly affirmed that significant differences were observed (P < 0.05) in periphyton quantity among the three substrates tested. A total 16 phyto-periphytic microalgae (Bacillariophyceae – 10 types, Dinophyceae – 4 types and Cyanophyceae – 2 types) and 10 Zoo-periphyton (Copepod- 4 types, Meroplankton – 4 types and Tintin-nidae – 2 types) were recorded from these three substrates. Among the different phyto-periphytic microalgae, Bacil-lariophyceae group were found to be more (Split bamboo pole – 72%, Coconut coir – 73% and Coconut shell – 71%) on three substrates studied. Further, coconut coir was found to be best substrate than split bamboo pole and coconut shell, which can be utilized by fin and shellfishes as natural food

    Trust And Energy-Aware Routing Protocol for Wireless Sensor Networks Based on Secure Routing

    Get PDF
    Wireless Sensor Network (WSN) is a network area that includes a large number of nodes and the ability of wireless transmission. WSNs are frequently employed for vital applications in which security and dependability are of utmost concern. The main objective of the proposed method is to design a WSN to maximize network longevity while minimizing power usage. In a WSN, trust management is employed to encourage node collaboration, which is crucial for achieving dependable transmission. In this research, a novel Trust and Energy Aware Routing Protocol (TEARP) in wireless sensors networks is proposed, which use blockchain technology to maintain the identity of the Sensor Nodes (SNs) and Aggregator Nodes (ANs). The proposed TEARP technique provides a thorough trust value for nodes based on their direct trust values and the filtering mechanisms generate the indirect trust values. Further, an enhanced threshold technique is employed to identify the most appropriate clustering heads based on dynamic changes in the extensive trust values and residual energy of the networks. Lastly, cluster heads should be routed in a secure manner using a Sand Cat Swarm Optimization Algorithm (SCSOA). The proposed method has been evaluated using specific parameters such as Network Lifetime, Residual Energy, Throughpu,t Packet Delivery Ratio, and Detection Accuracy respectively. The proposed TEARP method improves the network lifetime by 39.64%, 33.05%, and 27.16%, compared with Energy-efficient and Secure Routing (ESR), Multi-Objective nature-inspired algorithm based on Shuffled frog-leaping algorithm and Firefly Algorithm (MOSFA) , and Optimal Support Vector Machine (OSVM)

    भारत में शूलचर्मी पालन में संभावनाएं

    Get PDF
    Prospects of Echiniculture in Indi

    Flood risk management of a small urban river using a sustainable urban drainage system: Wortley Beck, Leeds, UK

    Get PDF
    This paper explores potential flood resilience approaches for the highly urbanised Wortley Beck river basin, south west of the City of Leeds, UK. Integrated 1D and 2D hydrodynamic modelling, using the ISIS and TUFLOW has been utilised to explore potential impact of SuDS on the flood hazard for three (1:15, 1:50 and 1:100) flood events. A direct rainfall runoff modelling approach has been employed to implicitly incorporate SuDS features within the case study region. Results indicate that SuDS reduce the flood hazard in downstream for all three (1:15, 1:50 and 1:100) flood events, with the effect more pronounced for the lowest rainfall (1:15) event
    corecore