188 research outputs found

    Classical Effects of Laser Pulse Duration on Strong-field Double Ionization

    Full text link
    We use classical electron ensembles and the aligned-electron approximation to examine the effect of laser pulse duration on the dynamics of strong-field double ionization. We cover the range of intensities 1014−1016W/cm210^{14}-10^{16} W/cm^2 for the laser wavelength 780 nm. The classical scenario suggests that the highest rate of recollision occurs early in the pulse and promotes double ionization production in few-cycle pulses. In addition, the purely classical ensemble calculation predicts an exponentially decreasing recollision rate with each subsequent half cycle. We confirm the exponential behavior by trajectory back-analysis

    Non-sequential double ionization below laser-intensity threshold: Anticorrelation of electrons without excitation of parent ion

    Full text link
    Two-electron correlated spectra of non-sequential double ionization below laser-intensity threshold are known to exhibit back-to-back scattering of the electrons, viz., the anticorrelation of the electrons. Currently, the widely accepted interpretation of the anticorrelation is recollision-induced excitation of the ion plus subsequent field ionization of the second electron. We argue that another mechanism, namely simultaneous electron emission, when the time of return of the rescattered electron is equal to the time of liberation of the bounded electron (the ion has no time for excitation), can also explain the anticorrelation of the electrons in the deep below laser-intensity threshold regime. Our conclusion is based on the results of the numerical solution of the time-dependent Schr\"{o}dinger equation for a model system of two one-dimensional electrons as well as an adiabatic analytic model that allows for a closed-form solution.Comment: 6 pages and 3 figure

    Many-electron tunneling in atoms

    Get PDF
    A theoretical derivation is given for the formula describing N-electron ionization of atom by a dc field and laser radiation in tunneling regime. Numerical examples are presented for noble gases atoms.Comment: 11 pages, 1 EPS figure, submitted to JETP (Jan 99

    Effect of Heart Structure on Ventricular Fibrillation in the Rabbit: A Simulation Study

    Get PDF
    Ventricular fibrillation (VF) is a lethal condition that affects millions worldwide. The mechanism underlying VF is unstable reentrant electrical waves rotating around lines called filaments. These complex spatio-temporal patterns can be studied using both experimental and numerical methods. Computer simulations provide unique insights including high resolution dynamics throughout the heart and systematic control of quantities such as fiber orientation and cellular kinetics that are not feasible experimentally. Here we study filament dynamics using two bi-ventricular 3-D high-resolution rabbit heart geometries, one with detailed fine structure and another without fine structure. We studied filament dynamics using anisotropic and isotropic conductivities, and with four cellular action potential models with different recovery kinetics. Spiral wave dynamics observed in isotropic two-dimensional sheets were not predictive of the behavior in the whole heart. In 2-D the four cell models exhibited stable reentry, meandering spiral waves, and spiral-wave breakup. In the whole heart with fine structure, all simulation results exhibited complex dynamics reminiscent of fibrillation observed experimentally. In the whole heart without fine structure, anisotropy acted to destabilize filament dynamics although the number of filaments was reduced compared to the heart with structure. In addition, in isotropic hearts without structure the two cell models that exhibited meandering spiral waves in 2-D, stabilized into figure-of-eight surface patterns. We also studied the sensitivity of filament dynamics to computer system configuration and initial conditions. After large simulation times, different macroscopic results sometimes occurred across different system configurations, likely due to a lack of bitwise reproducibility. The study conclusions were insensitive to initial condition perturbations, however, the exact number of filaments over time and their trends were altered by these changes. In summary, we present the following new results. First, we provide a new cell model that resembles the surface patterns of VF in the rabbit heart both qualitatively and quantitatively. Second, filament dynamics in the whole heart cannot be predicted from spiral wave dynamics in 2-D and we identified anisotropy as one destabilizing factor. Third, the exact dynamics of filaments are sensitive to a variety of factors, so we suggest caution in their interpretation and their quantitative analyses

    Correlated multi-electron dynamics in ultrafast laser pulse - atom interactions

    Full text link
    We present the results of the detailed experimental study of multiple ionization of Ne and Ar by 25 and 7 fs laser pulses. For Ne the highly correlated "instantaneous" emission of up to four electrons is triggered by a recollisional electron impact, whereas in multiple ionization of Ar different mechanisms, involving field ionization steps and recollision-induced excitations, play a major role. Using few-cycle pulses we are able to suppress those processes that occur on time scales longer than one laser cycle.Comment: 9 pages, 4 figure

    Potential of Endangered Local Donkey Breeds in Meat and Milk Production

    Get PDF
    The problem of the erosion of animal genetic resources is evident in certain local donkey breeds, and their long-term sustainability can be achieved by economically repositioning them. To develop alternative and sustainable commercial programs, the meat and milk production characteristics of Istrian donkey and Littoral Dinaric donkey breeds were investigated. The meat production characteristics were examined in mature males, whose carcasses were dissected, and meat composition was determined using NIT spectrophotometry and gas chromatography. Milk yield and milk composition were determined in jennies in second or subsequent lactations by measuring milk volume and using infrared spectrometry and gas chromatography. Compared to the Littoral Dinaric donkey, the Istrian donkey has a higher carcass weight and dressing percentage (p < 0.001). The share of boneless meat in relation to live weight was 28.27% in the Istrian donkey and 26.18% in the Littoral Dinaric donkey. The absolute masses of primal cuts of meat in E, I, and II classes were significantly greater in Istrian donkeys than in Littoral Dinaric donkeys (p < 0.01), although the differences in the proportions of primal cuts were not significant. The breed did not have a significant impact on the color, pH, or meat composition. A significant influence of breed on milk yield, lactose, protein, and the fat content of milk was observed (p < 0.01). A significant influence of breed on the ratio of n-6/n-3 PUFA fatty acids in donkey milk was observed (p = 0.002). The values of the atherogenic and thrombogenic indexes were favorable, considering potential beneficial effects of donkey milk and meat on consumer health. The findings of this research suggest that local donkey breeds hold significant potential for meat and milk production, focusing on the uniqueness and quality of their products rather than the quantity of meat and milk they can produce

    An integrated ultra-high vacuum apparatus for growth and in situ characterization of complex materials

    Get PDF
    Here we present an integrated ultra-high vacuum apparatus \u2013 named MBE-Cluster \u2013 dedicated to the growth and in situ structural, spectroscopic and magnetic characterization of complex materials. Molecular Beam Epitaxy (MBE) growth of metal oxides, e.g. manganites, and deposition of patterned metallic layers can be fabricated and in situ characterized by reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED) - Auger Electron Spectroscopy, X-ray photoemission spectroscopy (PES) and azimuthal longitudinal magneto-optic Kerr effect (MOKE). The temperature can be controlled in the range from 5 to 580 K, with the possibility of application of magnetic fields H up to \ub17 kOe and electric fields E for voltages up to \ub1500 V. The MBE-Cluster operates for in-house research as well as user facility in combination with the APE beamlines at Sincrotrone-Trieste and the high harmonic generator (HHG) facility for timeresolved spectroscopy

    Solar-like oscillations in low-luminosity red giants: first results from Kepler

    Get PDF
    We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30-minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from the red clump down to the bottom of the giant branch. We confirm a strong correlation between the large separation of the oscillations (Delta nu) and the frequency of maximum power (nu_max). We focus on a sample of 50 low-luminosity stars (nu_max > 100 muHz, L <~ 30 L_sun) having high signal-to-noise ratios and showing the unambiguous signature of solar-like oscillations. These are H-shell-burning stars, whose oscillations should be valuable for testing models of stellar evolution and for constraining the star-formation rate in the local disk. We use a new technique to compare stars on a single echelle diagram by scaling their frequencies and find well-defined ridges corresponding to radial and non-radial oscillations, including clear evidence for modes with angular degree l=3. Measuring the small separation between l=0 and l=2 allows us to plot the so-called C-D diagram of delta nu_02 versus Delta nu. The small separation delta nu_01 of l=1 from the midpoint of adjacent l=0 modes is negative, contrary to the Sun and solar-type stars. The ridge for l=1 is notably broadened, which we attribute to mixed modes, confirming theoretical predictions for low-luminosity giants. Overall, the results demonstrate the tremendous potential of Kepler data for asteroseismology of red giants.Comment: accepted by ApJ Letters, to appear in special Kepler issue. Updated reference

    A wearable motion capture suit and machine learning predict disease progression in Friedreich's ataxia

    Get PDF
    Friedreich's ataxia (FA) is caused by a variant of the Frataxin (FXN) gene, leading to its downregulation and progressively impaired cardiac and neurological function. Current gold-standard clinical scales use simplistic behavioral assessments, which require 18- to 24-month-long trials to determine if therapies are beneficial. Here we captured full-body movement kinematics from patients with wearable sensors, enabling us to define digital behavioral features based on the data from nine FA patients (six females and three males) and nine age- and sex-matched controls, who performed the 8-m walk (8-MW) test and 9-hole peg test (9 HPT). We used machine learning to combine these features to longitudinally predict the clinical scores of the FA patients, and compared these with two standard clinical assessments, Spinocerebellar Ataxia Functional Index (SCAFI) and Scale for the Assessment and Rating of Ataxia (SARA). The digital behavioral features enabled longitudinal predictions of personal SARA and SCAFI scores 9 months into the future and were 1.7 and 4 times more precise than longitudinal predictions using only SARA and SCAFI scores, respectively. Unlike the two clinical scales, the digital behavioral features accurately predicted FXN gene expression levels for each FA patient in a cross-sectional manner. Our work demonstrates how data-derived wearable biomarkers can track personal disease trajectories and indicates the potential of such biomarkers for substantially reducing the duration or size of clinical trials testing disease-modifying therapies and for enabling behavioral transcriptomics
    • …
    corecore