217 research outputs found

    Study of the Helium Enrichment in Globular Clusters

    Full text link
    Globular clusters (GCs) are spheroidal concentrations typically containing of the order of 10^5 to 10^6, predominantly old, stars. Historically, they have been considered as the closest counterparts of the idealized concept of "simple stellar populations." However, some recent observations suggest than, at least in some GCs, some stars are present that have been formed with material processed by a previous generation of stars. In this sense, it has also been suggested that such material might be enriched in helium, and that blue horizontal branch stars in some GCs should accordingly be the natural progeny of such helium-enhanced stars. In this contribution we show that, at least in the case of M3 (NGC 5272), the suggested level of helium enrichment is not supported by the available, high-precision observations.Comment: 4 pages, 2 figures. To appear in the proceedings of IAU Symp. 262 (ed. G. Bruzual & S. Charlot

    Quark Cluster Model Study of Isospin-Two Dibaryons

    Get PDF
    Based on a quark cluster model for the non-strange sector that reproduces reasonably well the nucleon-nucleon system and the excitation of the Δ\Delta isobar, we generate a nucleon-Δ\Delta interaction and present the predictions for the several isospin two channels. The only attractive channels are 0+0^+ and 0−0^-, but not attractive enough to generate a resonance. If a resonance is artificially generated and is required to have the observed experimental mass, then our model predicts a width that agrees with the experimental result.Comment: 12 pages, 5 poscript figures available under request. To appear in Phys. Rev.

    Pulsation Period Changes as a Tool to Identify Pre-Zero Age Horizontal Branch Stars

    Full text link
    One of the most dramatic events in the life of a low-mass star is the He flash, which takes place at the tip of the red giant branch (RGB) and is followed by a series of secondary flashes before the star settles into the zero-age horizontal branch (ZAHB). Yet, no stars have been positively identified in this key evolutionary phase, mainly for two reasons: first, this pre-ZAHB phase is very short compared to other major evolutionary phases in the life of a star; and second, these pre-ZAHB stars are expected to overlap the loci occupied by asymptotic giant branch (AGB), HB and RGB stars observed in the color-magnitude diagram (CMD). We investigate the possibility of detecting these stars through stellar pulsations, since some of them are expected to rapidly cross the Cepheid/RR Lyrae instability strip in their route from the RGB tip to the ZAHB, thus becoming pulsating stars along the way. As a consequence of their very high evolutionary speed, some of these stars may present anomalously large period change rates. We constructed an extensive grid of stellar models and produced pre-ZAHB Monte Carlo simulations appropriate for the case of the Galactic globular cluster M3 (NGC 5272), where a number of RR Lyrae stars with high period change rates are found. Our results suggest that some -- but certainly not all -- of the RR Lyrae stars in M3 with large period change rates are in fact pre-ZAHB pulsators.Comment: Conference Proceedings HELAS Workshop on 'Synergies between solar and stellar modelling', Rome, June 2009, Astrophys. Space Sci., in the pres

    Nonlocal calculation for nonstrange dibaryons and tribaryons

    Get PDF
    We study the possible existence of nonstrange dibaryons and tribaryons by solving the bound-state problem of the two- and three-body systems composed of nucleons and deltas. The two-body systems are NNNN, NΔN\Delta, and ΔΔ\Delta\Delta, while the three-body systems are NNNNNN, NNΔNN\Delta, NΔΔN\Delta\Delta, and ΔΔΔ\Delta\Delta\Delta. We use as input the nonlocal NNNN, NΔN\Delta, and ΔΔ\Delta\Delta potentials derived from the chiral quark cluster model by means of the resonating group method. We compare with previous results obtained from the local version based on the Born-Oppenheimer approximation.Comment: 19 pages. To be published in Physical Review

    Are there compact heavy four-quark bound states?

    Get PDF
    We present an exact method to study four-quark systems based on the hyperspherical harmonics formalism. We apply it to several physical systems of interest containing two heavy and two light quarks using different quark-quark potentials. Our conclusions mark the boundaries for the possible existence of compact, non-molecular, four-quark bound states. While QQnˉnˉQQ\bar n \bar n states may be stable in nature, the stability of QQˉnnˉQ\bar Qn \bar n states would imply the existence of quark correlations not taken into account by simple quark dynamical modelsComment: 10 pages, 1 figure. Accepted for publication in Phys. Rev.

    Does the quark cluster model predict any isospin two dibaryon resonance?

    Get PDF
    We analyze the possible existence of a resonance in the JP=0−J^P=0^- channel with isospin two by means of nucleon-Δ\Delta interactions based on the constituent quark model. We solve the bound state and the scattering problem using two different potentials, a local and a non-local one. The non-local potential results to be the more attractive, although not enough to generate the experimentally predicted resonance.Comment: 9 pages in Latex (revtex), 2 eps figures available under reques

    Long- and medium-range components of the nuclear force in quark-model based calculations

    Get PDF
    Quark-model descriptions of the nucleon-nucleon interaction contain two main ingredients, a quark-exchange mechanism for the short-range repulsion and meson-exchanges for the medium- and long-range parts of the interaction. We point out the special role played by higher partial waves, and in particular the 1F3, as a very sensitive probe for the meson-exchange part employed in these interaction models. In particular, we show that the presently available models fail to provide a reasonable description of higher partial waves and indicate the reasons for this shortcoming.Comment: 19 pages, 7 figure

    Mass and width of the d′d' resonance in nuclei

    Full text link
    We calculated the mass and width of the d′d' resonance inside nuclei within a nucleon-Δ\Delta model by including the self-energy of the Δ\Delta in the NΔN\Delta propagator. We found that in the nuclear medium the width of the d′d' is increased by one order of magnitude while its mass changes only by a few MeV. This broadening of the width of the d′d' resonance embedded in nuclei is consistent with the experimental observations so that the d′d' can be understood as a NΔN\Delta resonance. Thus, given the freedom between either isospin 0 or isospin 2 for the d′d', our results give weigth to the isospin-2 assignment.Comment: 14 pages, RevteX type, 2 eps figures. To be published in Phys. Rev. C (September
    • …
    corecore