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Abstract

We analyze the possible existence of a resonance in the JP = 0� channel

with isospin two by means of nucleon-� interactions based on the constituent

quark model. We solve the bound state and the scattering problem using

two di�erent potentials, a local and a non-local one. The non-local poten-

tial results to be the more attractive, although not enough to generate the

experimentally predicted resonance.
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The existence of bound states of negative pions and neutrons (pineuts) was predicted

theoretically years ago [1]. A system of neutrons and negative pions gives rise to a structure

similar to an ordinary nucleus, where the protons have been replaced by negative pions.

Since these systems can only decay through weak interactions, they should be stable and

have lifetimes comparable to that of the pion. Then, a question arises immediately as to if

one could observe even the simple of these possible pineuts, a bound state of a pion and two

neutrons, just like a nucleon-� bound state.

This problem has been studied from the theoretical point of view by means of di�erent

methods [2,3] and with di�erent conclusions, but never de�nitively excluding the possibility

of a resonance. Mainly due to this controversial situation, a lot of experiments were done

to �nd evidences of such a resonance. After some signatures in experiments with poor res-

olutions [4], an experiment with high intensity proton beams almost excluded the existence

of these structures [5].

The situation has been recently renewed from the experimental point of view. In Ref.

[6], a JP = 0� resonance has been proposed to explain a sharp peak seen on the pionic

double charge exchange cross section in several nuclei from 14C to 48Ca. The narrow width

of these peaks suggested that the resonance must have isospin even, otherwise decay into

nucleon-nucleon (NN) would be allowed, causing a much large width. Besides, based on

QCD string models, they assumed that the resonance has isospin zero. However, in Refs.

[3,7] was pointed out that the narrow width of this structure could be related with the

vicinity of the nucleon-� (N�) threshold and therefore the resonance most likely must have

isospin two (the N� system cannot coupled to isospin zero).

Our aim in this paper is to present the predictions of a quark model based potential

about the possibility of a N� resonance with isospin two. Previous calculations based on

the three-body formalism of the �NN system predict a large attraction in the 0� channel

[2], the same proposed in Ref. [6]. Therefore, the 0� channel is the ideal candidate to posses

a resonance and we will concentrate on it. Moreover, we will see that in case the resonance

exists there is a strong correlation between its mass and its width due to the proximity of
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the N� threshold.

We have derived a N� interaction using the same two-center quark-cluster model of Ref.

[9]. Quarks acquire a dynamical mass as a consequence of the chiral symmetry breaking. To

restore this symmetry one has at least to introduce the exchange of a pseudoscalar (pion)

and a scalar (sigma) boson between quarks. Besides, a perturbative contribution is obtained

from the non-relativistic reduction of the one-gluon exchange diagram in QCD.

Therefore, the ingredients of the quark-quark interaction are the con�ning potential

(CON), the one-gluon exchange (OGE), the one-pion exchange (OPE) and the one-sigma

exchange (OSE). The explicit form of these interactions is given by (see Ref. [9] for details),
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The main advantage of this model comes from the fact that it works with a single

qq-meson vertex. Therefore, its parameters (coupling constants, cut-o� masses,...) are

independent of the baryon to which the quarks are coupled, the di�erence among them

being generated by SU(2) scaling. This makes the generalization of the NN interaction to

any other non-strange baryonic system straightforward, and in particular to the N� system.

Once the quark-quark interaction is chosen, an e�ective nucleon-� potential can be

obtained as the expectation value of the energy of the six-quark system minus the self-

energies of the two clusters, which can be computed as the energy of the six-quark system

when the two quark clusters do not interact:

VN�(LS T )!N�(L0 S0 T )(R;R
0) = �L

0 S0 T
LS T (R;R0) � �L

0 S0 T
LS T (1;1) ; (5)

where,
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The parameters of the model are those of Ref. [9]. As local potential we will assume R = R0.

In order to determine the nature (attractive or repulsive) of the 0� N� channel, we will

�rst calculate the Fredholm determinant of that channel as a function of energy assuming

a stable delta and nonrelativistic kinematics. That means, we will use the Lippmann-

Schwinger equation

Tij(q; q0) = Vij(q; q0) +
X
k

Z
1

0
q02dq0Vik(q; q

0)G0(E; q
0)Tkj(q
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where the two-body propagator is

G0(E; q) =
1

E � q2=2� + i�
; (8)

with reduced mass

� =
mNm�

mN +m�

: (9)

The energy and on-shell momentum are related as

E = q20=2� ; (10)

and we will restrict ourselves to the region E � 0.

If we replace the integration in Eq. (7) by a numerical quadrature, the integral equations

take the form

Tij(qn; q0) = Vij(qn; q0) +
X
k

X
m

wmq
2
mVik(qn; qm)G0(E; qm)Tkj(qm; q0) ; (11)

where qm and wm are the abscissas and weights of the quadrature (we use a 40-point Gauss

quadrature). Eq. (11) gives rise to the set of inhomogeneous linear equations

X
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M ik
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with
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M ik
nm(E) = �ik�nm � wmq

2
mVik(qn; qm)G0(E; qm) : (13)

If a bound state exists at an energy EB, the determinant of the matrix M ik
nm(EB) (the

Fredholm determinant) must vanish, i.e.,

���M ik
nm(EB)

��� = 0: (14)

Even if there is no bound state, the Fredholm determinant is a very useful tool to

determine the nature of a given channel. If the Fredholm determinant is larger than one

that means that channel is repulsive. If the Fredholm determinant is less than one that

means the channel is attractive. Finally, if the Fredholm determinant passes through zero

that means there is a bound state at that energy.

In Figure 1 we compare the Fredholm determinant generated by the local and non-

local quark model based potentials. The non-locality of the interaction generates additional

attraction, enough to produce a resonance (it goes through zero).

To determine the exact location of the resonance, we calculate Argand diagrams between

a stable and an unstable particle using the formalism of Ref. [8]. In this case, however, we

will use relativistic kinematics and will include the width of the delta. That means, instead

of the propagator (8) we will use [8]

G0(S; q) =
2m�

s�m2
� + im���(s; q)

; (15)

where S is the invariant mass squared of the system, while s is the invariant mass squared

of the �N subsystem (those are the decay products of the �) and is given by

s = S +m2
N � 2
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The width of the � is taken to be [8]
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where p0 is the pion-nucleon relative momentum given by
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We show in Figure 2 the phase shifts for the 0� channel. As it can be seen from this �gure,

the attraction is only strong enough to produce a resonance with the non-local potential (it

reaches 90 degrees). This resonance lies at 2145.6 MeV and has a width of 148.12 MeV for

the mass of the sigma predicted by chiral symmetry requirements m� � 675 MeV.

The proposed resonance has a mass of 2065 MeV and a very small width of 0.51 MeV

[6]. It is therefore very interesting to investigate whether the nucleon-� system exhibit the

features of this resonance, and particularly such a tiny width.

In order to do this, we have arti�cially varied the mass of the � meson with both potential

models, such as to increase the amount of attraction. We show in Table I the mass and width

of the resonance and the corresponding mass of the sigma meson necessary to generate

it. The width of the resonance drops dramatically when its mass approaches the �NN

threshold (2017 MeV). This result can be understood from simple angular momentum barrier

considerations. If we call q and L to the relative momentum and relative orbital angular

momentum between a nucleon and the �-nucleon pair, respectively, then since L = 1 the

width of the resonance will be proportional to q2L+1 = q3, so that it will drop very fast as

one approaches the �NN threshold since there q! 0.

In both local and non local potential models, when the mass of the sigma is taken to

reproduce the predicted mass of the resonance (2065 MeV) the width is very narrow, which is

in very good agreement with the predictions extracted by Bilger and Clement [6]. Therefore,

the sharp peak seen in the double charge exchange reactions could be justi�ed as a nucleon-�

resonance in the isospin 2 channel, without resorting to other more exotic processes.

As a summary, we have studied the nucleon-� system in the 0� channel with isospin

two, within the quark cluster model of the baryon-baryon interaction. We have used a

local and a non-local potential. We found that the non-local e�ects generate additional

attraction, although not enough to reproduce the resonance predicted in Ref. [6]. However,

due to the proximity of the nucleon-� threshold, if we force the resonance mass to reach
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the experimental predicted value of 2065 MeV, then its width is very narrow, in very good

agreement with the width extracted in Ref. [6].
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TABLES

TABLE I. Mass and width of the 0� resonance with the corresponding mass of the sigma meson

using the local and non-local nucleon-� potentials based on the constituent quark model.

Potential model m�(MeV ) MRes(MeV ) �Res(MeV )

Local 234.0 2064.4 0.6

Non local 422.0 2064.5 1.6
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