27,717 research outputs found

    Buckling behavior of Rene 41 tubular panels for a hypersonic aircraft wing

    Get PDF
    The buckling characteristics of Rene 41 tubular panels for a hypersonic aircraft wing were investigated. The panels were repeatedly tested for buckling characteristics using a hypersonic wing test structure and a universal tension/compression testing machine. The nondestructive buckling tests were carried out under different combined load conditions and in different temperature environments. The force/stiffness technique was used to determine the buckling loads of the panel. In spite of some data scattering, resulting from large extrapolations of the data fitting curve (because of the termination of applied loads at relatively low percentages of the buckling loads), the overall test data correlate fairly well with theoretically predicted buckling interaction curves. Also, the structural efficiency of the tubular panels was found to be slightly higher than that of beaded panels

    String-derived D4 flavor symmetry and phenomenological implications

    Get PDF
    In this paper we show how some flavor symmetries may be derived from the heterotic string, when compactified on a 6D orbifold. In the body of the paper we focus on the D4D_4 family symmetry, recently obtained in Z3×Z2Z_3 \times Z_2 orbifold constructions. We show how this flavor symmetry constrains fermion masses, as well as the soft SUSY breaking mass terms. Flavor symmetry breaking can generate the hierarchy of fermion masses and at the same time the flavor symmetry suppresses large flavor changing neutral current processes.Comment: 17 pages, no figur

    The atmospheric effects of stratospheric aircraft: A current consensus

    Get PDF
    In the early 1970's, a fleet of supersonic aircraft flying in the lower stratosphere was proposed. A large fleet was never built for economic, political, and environmental reasons. Technological improvements may make it economically feasible to develop supersonic aircraft for current markets. Some key results of earlier scientific programs designed to assess the impact of aircraft emissions on stratospheric ozone are reviewed, and factors that must be considered to assess the environmental impact of aircraft exhaust are discussed. These include the amount of nitrogen oxides injected in the stratosphere, horizontal transport, and stratosphere/troposphere assessment models are presented. Areas in which improvements in scientific understanding and model representation must be made to reduce the uncertainty in model calculations are identified

    Fidelity of capture-enrichment for mtDNA genome sequencing: influence of NUMTs

    No full text

    Hadron widths in mixed-phase matter

    Get PDF
    We derive classically an expression for a hadron width in a two-phase region of hadron gas and quark-gluon plasma (QGP). The presence of QGP gives hadrons larger widths than they would have in a pure hadron gas. We find that the ϕ\phi width observed in a central Au+Au collision at s=200\sqrt{s}=200 GeV/nucleon is a few MeV greater than the width in a pure hadron gas. The part of observed hadron widths due to QGP is approximately proportional to (dN/dy)−1/3(dN/dy)^{-1/3}.Comment: 8 pages, latex, no figures, KSUCNR-002-9

    Discrete Morse functions for graph configuration spaces

    Full text link
    We present an alternative application of discrete Morse theory for two-particle graph configuration spaces. In contrast to previous constructions, which are based on discrete Morse vector fields, our approach is through Morse functions, which have a nice physical interpretation as two-body potentials constructed from one-body potentials. We also give a brief introduction to discrete Morse theory. Our motivation comes from the problem of quantum statistics for particles on networks, for which generalized versions of anyon statistics can appear.Comment: 26 page

    Theory and observations: Model simulations of the period 1955-1985

    Get PDF
    The main objective of the theoretical studies presented here is to apply models of stratospheric chemistry and transport in order to understand the processes that control stratospheric ozone and that are responsible for the observed variations. The model calculations are intended to simulate the observed behavior of atmospheric ozone over the past three decades (1955-1985), for which there exists a substantial record of both ground-based and, more recently, satellite measurements. Ozone concentrations in the atmosphere vary on different time scales and for several different causes. The models described here were designed to simulate the effect on ozone of changes in the concentration of such trace gases as CFC, CH4, N2O, and CO2. Changes from year to year in ultraviolet radiation associated with the solar cycle are also included in the models. A third source of variability explicitly considered is the sporadic introduction of large amounts of NO sub x into the stratosphere during atmospheric nuclear tests
    • …
    corecore