47,581 research outputs found

    Anomalous Hall Effect of Calcium-doped Lanthanum Cobaltite Films

    Full text link
    The Hall resistivity, magnetoresistance, and magnetization of La_{1-x}Ca_{x}CoO_{3} epitaxial films with x between 0.25 and 0.4 grown on lanthanum aluminate were measured in fields up to 7 T. The x=1/3 film, shows a reentrant metal insulator transition. Below 100 K, the x=1/3 and 0.4 films have significant coercivity which increases with decreasing temperature. At low temperature the Hall resistivity remains large and essentially field independent in these films, except for a sign change at the coercive field that is more abrupt than the switching of the magnetization. A unique magnetoresistance behavior accompanies this effect. These results are discussed in terms of a percolation picture and the mixed spin state model for this system. We propose that the low-temperature Hall effect is caused by spin-polarized carriers scattering off of orbital disorder in the spin-ordered clusters.Comment: REVTeX 4, 3 pages with 4 encapsulated postscript graphics. Submitted to MMM 2002 conference proceedings (J. Appl. Phys.

    Isogeometric analysis for functionally graded microplates based on modified couple stress theory

    Get PDF
    Analysis of static bending, free vibration and buckling behaviours of functionally graded microplates is investigated in this study. The main idea is to use the isogeometric analysis in associated with novel four-variable refined plate theory and quasi-3D theory. More importantly, the modified couple stress theory with only one material length scale parameter is employed to effectively capture the size-dependent effects within the microplates. Meanwhile, the quasi-3D theory which is constructed from a novel seventh-order shear deformation refined plate theory with four unknowns is able to consider both shear deformations and thickness stretching effect without requiring shear correction factors. The NURBS-based isogeometric analysis is integrated to exactly describe the geometry and approximately calculate the unknown fields with higher-order derivative and continuity requirements. The convergence and verification show the validity and efficiency of this proposed computational approach in comparison with those existing in the literature. It is further applied to study the static bending, free vibration and buckling responses of rectangular and circular functionally graded microplates with various types of boundary conditions. A number of investigations are also conducted to illustrate the effects of the material length scale, material index, and length-to-thickness ratios on the responses of the microplates.Comment: 57 pages, 14 figures, 18 table

    Giant Spin Seebeck Effect through an Interface Organic Semiconductor

    Full text link
    Interfacing an organic semiconductor C60 with a non-magnetic metallic thin film (Cu or Pt) has created a novel heterostructure that is ferromagnetic at ambient temperature, while its interface with a magnetic metal (Fe or Co) can tune the anisotropic magnetic surface property of the material. Here, we demonstrate that sandwiching C60 in between a magnetic insulator (Y3Fe5O12: YIG) and a non-magnetic, strong spin-orbit metal (Pt) promotes highly efficient spin current transport via the thermally driven spin Seebeck effect (SSE). Experiments and first principles calculations consistently show that the presence of C60 reduces significantly the conductivity mismatch between YIG and Pt and the surface perpendicular magnetic anisotropy of YIG, giving rise to enhanced spin mixing conductance across YIG/C60/Pt interfaces. As a result, a 600% increase in the SSE voltage (VLSSE) has been realized in YIG/C60/Pt relative to YIG/Pt. Temperature-dependent SSE voltage measurements on YIG/C60/Pt with varying C60 layer thicknesses also show an exponential increase in VLSSE at low temperatures below 200 K, resembling the temperature evolution of spin diffusion length of C60. Our study emphasizes the important roles of the magnetic anisotropy and the spin diffusion length of the intermediate layer in the SSE in YIG/C60/Pt structures, providing a new pathway for developing novel spin-caloric materials

    First High-Density Linkage Map and Single Nucleotide Polymorphisms Significantly Associated With Traits of Economic Importance in Yellowtail Kingfish Seriola lalandi

    Get PDF
    The genetic resources available for the commercially important fish species Yellowtail kingfish (YTK) (Seriola lalandi) are relative sparse. To overcome this, we aimed (1) to develop a linkage map for this species, and (2) to identify markers/variants associated with economically important traits in kingfish (with an emphasis on body weight). Genetic and genomic analyses were conducted using 13,898 single nucleotide polymorphisms (SNPs) generated from a new high-throughput genotyping by sequencing platform, Diversity Arrays Technology (DArTseq (TM)) in a pedigreed population comprising 752 animals. The linkage analysis enabled to map about 4,000 markers to 24 linkage groups (LGs), with an average density of 3.4 SNPs per cM. The linkage map was integrated into a genome-wide association study (GWAS) and identified six variants/SNPs associated with body weight (P <5e(-8)) when a multi-locus mixed model was used. Two out of the six significant markers were mapped to LGs 17 and 23, and collectively they explained 5.8% of the total genetic variance. It is concluded that the newly developed linkage map and the significantly associated markers with body weight provide fundamental information to characterize genetic architecture of growth-related traits in this population of YTK S. lalandi.Peer reviewe

    From antiferromagnetism to superconductivity in Fe 1+y(Te1-x,Sex) (0 < x < 0.20): a neutron powder diffraction analysis

    Full text link
    The nuclear and magnetic structure of Fe1+y(Te1-x,Sex) (0 < x < 0.20) compounds was analyzed between 2 K and 300 K by means of Rietveld refinement of neutron powder diffraction data. Samples with x < 0.075 undergo a tetragonal to monoclinic phase transition at low temperature, whose critical temperature decreases with increasing Se content; this structural transition is strictly coupled to a long range antiferromagnetic ordering at the Fe site. Both the transition to a monoclinic phase and the long range antiferromagnetism are suppressed for 0.10 < x < 0.20. The onset of the structural and of the magnetic transition remains coincident with the increase of Se substitution. The low temperature monoclinic crystal structure has been revised. Superconductivity arises for x > 0.05, therefore a significant region where superconductivity and long range antiferromagnetism coexist is present in the pseudo-binary FeTe - FeSe phase diagram.Comment: 33 pages, 4 tables, 13 figure

    Out of equilibrium electronic transport properties of a misfit cobaltite thin film

    Full text link
    We report on transport measurements in a thin film of the 2D misfit Cobaltite Ca3Co4O9Ca_{3}Co_{4}O_{9}. Dc magnetoresistance measurements obey the modified variable range hopping law expected for a soft Coulomb gap. When the sample is cooled down, we observe large telegraphic-like fluctuations. At low temperature, these slow fluctuations have non Gaussian statistics, and are stable under a large magnetic field. These results suggest that the low temperature state is a glassy electronic state. Resistance relaxation and memory effects of pure magnetic origin are also observed, but without aging phenomena. This indicates that these magnetic effects are not glassy-like and are not directly coupled to the electronic part.Comment: accepted in Phys Rev B, Brief report

    InAs-AlSb quantum wells in tilted magnetic fields

    Full text link
    InAs-AlSb quantum wells are investigated by transport experiments in magnetic fields tilted with respect to the sample normal. Using the coincidence method we find for magnetic fields up to 28 T that the spin splitting can be as large as 5 times the Landau splitting. We find a value of the g-factor of about 13. For small even-integer filling factors the corresponding minima in the Shubnikov-de Haas oscillations cannot be tuned into maxima for arbitrary tilt angles. This indicates the anti-crossing of neighboring Landau and spin levels. Furthermore we find for particular tilt angles a crossover from even-integer dominated Shubnikov-de Haas minima to odd-integer minima as a function of magnetic field

    Hierarchical Re-estimation of Topic Models for Measuring Topical Diversity

    Get PDF
    A high degree of topical diversity is often considered to be an important characteristic of interesting text documents. A recent proposal for measuring topical diversity identifies three elements for assessing diversity: words, topics, and documents as collections of words. Topic models play a central role in this approach. Using standard topic models for measuring diversity of documents is suboptimal due to generality and impurity. General topics only include common information from a background corpus and are assigned to most of the documents in the collection. Impure topics contain words that are not related to the topic; impurity lowers the interpretability of topic models and impure topics are likely to get assigned to documents erroneously. We propose a hierarchical re-estimation approach for topic models to combat generality and impurity; the proposed approach operates at three levels: words, topics, and documents. Our re-estimation approach for measuring documents' topical diversity outperforms the state of the art on PubMed dataset which is commonly used for diversity experiments.Comment: Proceedings of the 39th European Conference on Information Retrieval (ECIR2017
    • …
    corecore