529 research outputs found

    Laser and microwave spectroscopy of even-parity Rydberg states of neutral ytterbium and Multichannel Quantum Defect Theory analysis

    Full text link
    New measurements of high-lying even parity 6sns1 ⁣S06sns\, {}^1 \! S_0 and 6snd3,1 ⁣D26snd\,{}^{3,1}\!D_2 levels of neutral 174^{174}Yb are presented in this paper. Spectroscopy is performed by a two-step laser excitation from the ground state 4f146s21 ⁣S04f^{14}6s^2 \, {}^1 \! S_0, and the Rydberg levels are detected by using the field ionization method. Additional two-photon microwave spectroscopy is used to improve the relative energy accuracy where possible. The spectroscopic measurements are complemented by a multichannel quantum defect theory (MQDT) analysis for the J=0 and the two-coupled J=2 even parity series. We compare our results with the previous analysis of Aymar {\it{et al}} \cite{Aymar_1980} and analyze the observed differences. From the new MQDT models, a revised value for the first ionization limit I6s=50443.07041(25)I_{6s}=50443.07041(25) cm1^{-1} is proposed.Comment: 15 pages, 3 figure

    A near-IR line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere

    Get PDF
    We report on spectropolarimetric observations of a near-IR line of Mn I located at 15262.702 A whose intensity and polarization profiles are very sensitive to the presence of hyperfine structure. A theoretical investigation of the magnetic sensitivity of this line to the magnetic field uncovers several interesting properties. The most important one is that the presence of strong Paschen-Back perturbations due to the hyperfine structure produces an intensity line profile whose shape changes according to the absolute value of the magnetic field strength. A line ratio technique is developed from the intrinsic variations of the line profile. This line ratio technique is applied to spectropolarimetric observations of the quiet solar photosphere in order to explore the probability distribution function of the magnetic field strength. Particular attention is given to the quietest area of the observed field of view, which was encircled by an enhanced network region. A detailed theoretical investigation shows that the inferred distribution yields information on the average magnetic field strength and the spatial scale at which the magnetic field is organized. A first estimation gives ~250 G for the mean field strength and a tentative value of ~0.45" for the spatial scale at which the observed magnetic field is horizontally organized.Comment: 42 pages, 17 figures, accepted for publication in the Astrophysical Journal. Figures 1 and 9 are in JPG forma

    On the mixing property for a class of states of relativistic quantum fields

    Full text link
    Let ω\omega be a factor state on the quasi-local algebra A\cal{A} of observables generated by a relativistic quantum field, which in addition satisfies certain regularity conditions (satisfied by ground states and the recently constructed thermal states of the P(ϕ)2P(\phi)_2 theory). We prove that there exist space and time translation invariant states, some of which are arbitrarily close to ω\omega in the weak* topology, for which the time evolution is weakly asymptotically abelian

    THE TRUNK ORIENTATION DURING SPRINT START ESTIMATED USING A SINGLE INERTIAL SENSOR

    Get PDF
    Sprint start and block acceleration are two very important phases which could determine the result of a sprint. Tellez & Doolittle (1984) showed that these two phases account for 64% of the total result for a 100m sprint. Sprinters have to move from a crouch to a standing position, trying to reach their maximal velocity as fast as possible. Many authors have delved into the biomechanical factors concerning both phases (Fortier et al., 2005; Harland & Steele, 1997; Schot & Knutzen, 1992). Trunk orientation is considered by coaches one of the key elements in moving from the crouch to the upright position, however only a few studies focused specifically on this parameter (Čoh et al., 1998; Čoh et al., 2006; Natta et al., 2006). Moreover, the experimental setups used in the latter studies are quite cumbersome and limited in terms of acquisition volume (motion capture systems, high-speed cameras or optical contact time meters), therefore, they are hardly usable during everyday training sessions. Wearable inertial measurement units (IMU), that embed 3D linear acceleration and angular rate sensors (accelerometers and gyroscopes), can be effectively used to perform in-field biomechanical analysis of sprint running, providing information useful for performance optimisation and injury prevention. In particular, IMUs provide an estimate of body segment rotations relative to an inertia system of reference with one axis oriented as the gravitational field. The aim of this pilot study is to validate the use of a single IMU to estimate the trunk orientation angle in the progression plane during a sprint start from the blocks

    Observation of a resonant four-body interaction in cold cesium Rydberg atoms

    Full text link
    Cold Rydberg atoms subject to long-range dipole-dipole interactions represent a particularly interesting system for exploring few-body interactions and probing the transition from 2-body physics to the many-body regime. In this work we report the direct observation of a resonant 4-body Rydberg interaction. We exploit the occurrence of an accidental quasi-coincidence of a 2-body and a 4-body resonant Stark-tuned Forster process in cesium to observe a resonant energy transfer requiring the simultaneous interaction of at least four neighboring atoms. These results are relevant for the implementation of quantum gates with Rydberg atoms and for further studies of many-body physics.Comment: 5 pages, 5 figure

    On Molecular Hydrogen Formation and the Magnetohydrostatic Equilibrium of Sunspots

    Full text link
    We have investigated the problem of sunspot magnetohydrostatic equilibrium with comprehensive IR sunspot magnetic field survey observations of the highly sensitive Fe I lines at 15650 \AA\ and nearby OH lines. We have found that some sunspots show isothermal increases in umbral magnetic field strength which cannot be explained by the simplified sunspot model with a single-component ideal gas atmosphere assumed in previous investigations. Large sunspots universally display non-linear increases in magnetic pressure over temperature, while small sunspots and pores display linear behavior. The formation of molecules provides a mechanism for isothermal concentration of the umbral magnetic field, and we propose that this may explain the observed rapid increase in umbral magnetic field strength relative to temperature. Existing multi-component sunspot atmospheric models predict that a significant amount of molecular hydrogen (H2) exists in the sunspot umbra. The formation of H2 can significantly alter the thermodynamic properties of the sunspot atmosphere and may play a significant role in sunspot evolution. In addition to the survey observations, we have performed detailed chemical equilibrium calculations with full consideration of radiative transfer effects to establish OH as a proxy for H2, and demonstrate that a significant population of H2 exists in the coolest regions of large sunspots.Comment: 17 pages, 19 figures, accepted for publication in Ap

    Quantum Hypothesis Testing and Non-Equilibrium Statistical Mechanics

    Full text link
    We extend the mathematical theory of quantum hypothesis testing to the general WW^*-algebraic setting and explore its relation with recent developments in non-equilibrium quantum statistical mechanics. In particular, we relate the large deviation principle for the full counting statistics of entropy flow to quantum hypothesis testing of the arrow of time.Comment: 60 page

    The Fine-Structure of the Net-Circular Polarization in a Sunspot Penumbra

    Full text link
    We present novel evidence for a fine structure observed in the net-circular polarization (NCP) of a sunspot penumbra based on spectropolarimetric measurements utilizing the Zeeman sensitive FeI 630.2 nm line. For the first time we detect a filamentary organized fine structure of the NCP on spatial scales that are similar to the inhomogeneities found in the penumbral flow field. We also observe an additional property of the visible NCP, a zero-crossing of the NCP in the outer parts of the center-side penumbra, which has not been recognized before. In order to interprete the observations we solve the radiative transfer equations for polarized light in a model penumbra with embedded magnetic flux tubes. We demonstrate that the observed zero-crossing of the NCP can be explained by an increased magnetic field strength inside magnetic flux tubes in the outer penumbra combined with a decreased magnetic field strength in the background field. Our results strongly support the concept of the uncombed penumbra

    Cooper pair sizes in 11Li and in superfluid nuclei: a puzzle?

    Full text link
    We point out a strong influence of the pairing force on the size of the two neutron Cooper pair in 11^{11}Li, and to a lesser extent also in 6^6He. It seems that these are quite unique situations, since Cooper pair sizes of stable superfluid nuclei are very little influenced by the intensity of pairing, as recently reported. We explore the difference between 11^{11}Li and heavier superfulid nuclei, and discuss reasons for the exceptional situation in 11^{11}Li.Comment: 9 pages. To be published in J. of Phys. G special issue on Open Problems in Nuclear Structure (OPeNST
    corecore