293 research outputs found

    Superconvergent Perturbation Method in Quantum Mechanics

    Get PDF
    An analogue of Kolmogorov's superconvergent perturbation theory in classical mechanics is constructed for self adjoint operators. It is different from the usual Rayleigh--Schr\"odinger perturbation theory and yields expansions for eigenvalues and eigenvectors in terms of functions of the perturbation parameter.Comment: 11 pages, LaTe

    Anisotropy of the paramagnetic susceptibility in LaTiO3_{3}: The electron-distribution picture in the ground state

    Full text link
    The energy-level scheme and wave functions of the titanium ions in LaTiO3_{3} are calculated using crystal-field theory and spin-orbit coupling. The theoretically derived temperature dependence and anisotropy of the magnetic susceptibility agree well with experimental data obtained in an untwinned single crystal. The refined fitting procedure reveals an almost isotropic molecular field and a temperature dependence of the van Vleck susceptibility. The charge distribution of the 3d--electron on the Ti positions and the principle values of the quadrupole moments are derived and agree with NMR data and recent measurements of orbital momentum and crystal-field splitting. The low value of the ordered moment in the antiferromagnetic phase is discussed.Comment: 6 pages, 2 figures, 3 table

    Evidence for Jahn-Teller distortions at the antiferromagnetic transition in LaTiO3_3

    Full text link
    LaTiO3_3 is known as Mott-insulator which orders antiferromagnetically at TN=146T_{\rm N}=146 K. We report on results of thermal expansion and temperature dependent x-ray diffraction together with measurements of the heat capacity, electrical transport measurements, and optical spectroscopy in untwinned single crystals. At TNT_{\rm N} significant structural changes appear, which are volume conserving. Concomitant anomalies are also observed in the dc-resistivity, in bulk modulus, and optical reflectivity spectra. We interpret these experimental observations as evidence of orbital order.Comment: 4 pages, 4 figures; published in Phys. Rev. Lett. 91, 066403 (2003

    Phase Space Formulation of Quantum Mechanics. Insight into the Measurement Problem

    Full text link
    A phase space mathematical formulation of quantum mechanical processes accompanied by and ontological interpretation is presented in an axiomatic form. The problem of quantum measurement, including that of quantum state filtering, is treated in detail. Unlike standard quantum theory both quantum and classical measuring device can be accommodated by the present approach to solve the quantum measurement problemComment: 29 pages, 4 figure

    Stochastic dynamics and control of a driven nonlinear spin chain: the role of Arnold diffusion

    Full text link
    We study a chain of non-linear, interacting spins driven by a static and a time-dependent magnetic field. The aim is to identify the conditions for the locally and temporally controlled spin switching. Analytical and full numerical calculations show the possibility of stochastic control if the underlying semi-classical dynamics is chaotic. This is achievable by tuning the external field parameters according to the method described in this paper. We show analytically for a finite spin chain that Arnold diffusion is the underlying mechanism for the present stochastic control. Quantum mechanically we consider the regime where the classical dynamics is regular or chaotic. For the latter we utilize the random matrix theory. The efficiency and the stability of the non-equilibrium quantum spin-states are quantified by the time-dependence of the Bargmann angle related to the geometric phases of the states.Comment: Journal-ref: to appear in J.Phys.

    The weak password problem: chaos, criticality, and encrypted p-CAPTCHAs

    Get PDF
    Vulnerabilities related to weak passwords are a pressing global economic and security issue. We report a novel, simple, and effective approach to address the weak password problem. Building upon chaotic dynamics, criticality at phase transitions, CAPTCHA recognition, and computational round-off errors we design an algorithm that strengthens security of passwords. The core idea of our method is to split a long and secure password into two components. The first component is memorized by the user. The second component is transformed into a CAPTCHA image and then protected using evolution of a two-dimensional dynamical system close to a phase transition, in such a way that standard brute-force attacks become ineffective. We expect our approach to have wide applications for authentication and encryption technologies.Comment: 5 pages, 6 figer

    Fasciola gigantica Fatty Acid Binding Protein (FABP) as a Prophylactic Agent against Schistosoma mansoni Infection in CD1 Mice

    Get PDF
    Although schistosomicidal drugs and other control measures exist, the advent of an efficacious vaccine remains the most potentially powerful means for controlling this disease. In this study, native fatty acid binding protein (FABP) from Fasciola gigantica was purified from the adult worm's crude extract by saturation with ammonium sulphate followed by separation on DEAE-Sephadex A-50 anion exchange chromatography and gel filtration using Sephacryl HR-100, respectively. CD1 mice were immunized with the purified, native F. gigantica FABP in Freund's adjuvant and challenged subcutaneously with 120 Schistosoma mansoni cercariae. Immunization of CD1 mice with F. gigantica FABP has induced heterologous protection against S. mansoni, evidenced by the significant reduction in mean worm burden (72.3%), liver and intestinal egg counts (81.3% and 80.8%, respectively), and hepatic granuloma counts (42%). Also, it elicited mixed IgG1/IgG2b immune responses with predominant IgG1 isotype, suggesting that native F. gigantica FABP is mediated by a mixed Th1/Th2 response. However, it failed to induce any significant differences in the oogram pattern or in the mean granuloma diameter. This indicated that native F. gigantica FABP could be a promising vaccine candidate against S. mansoni infection

    Manifestation of the Arnol'd Diffusion in Quantum Systems

    Full text link
    We study an analog of the classical Arnol'd diffusion in a quantum system of two coupled non-linear oscillators one of which is governed by an external periodic force with two frequencies. In the classical model this very weak diffusion happens in a narrow stochastic layer along the coupling resonance, and leads to an increase of total energy of the system. We show that the quantum dynamics of wave packets mimics, up to some extent, global properties of the classical Arnol'd diffusion. This specific diffusion represents a new type of quantum dynamics, and may be observed, for example, in 2D semiconductor structures (quantum billiards) perturbed by time-periodic external fields.Comment: RevTex, 4 pages including 7 ps-figures, corrected forma

    Yeast Protein Interactome Topology Provides Framework for Coordinated-Functionality

    Get PDF
    The architecture of the network of protein-protein physical interactions in Saccharomyces cerevisiae is exposed through the combination of two complementary theoretical network measures, betweenness centrality and `Q-modularity'. The yeast interactome is characterized by well-defined topological modules connected via a small number of inter-module protein interactions. Should such topological inter-module connections turn out to constitute a form of functional coordination between the modules, we speculate that this coordination is occurring typically in a pair-wise fashion, rather than by way of high-degree hub proteins responsible for coordinating multiple modules. The unique non-hub-centric hierarchical organization of the interactome is not reproduced by gene duplication-and-divergence stochastic growth models that disregard global selective pressures.Comment: Final, revised version. 13 pages. Please see Nucleic Acids open access article for higher resolution figure

    Anisotropy paramagnetic susceptibility in LaTiO3

    Get PDF
    The energy-level scheme and wave functions of titanium ions in LaTiO 3 are calculated using crystal-field theory. The theoretically derived temperature dependence of the magnetic susceptibility agrees with our new experimental data obtained in an untwinned single crystal
    • …
    corecore