34 research outputs found

    The Jurassic Laberge Group in the Whitehorse Trough of the Canadian Cordillera: Using Detrital Mineral Geochronology and Thermochronology to Investigate Tectonic Evolution

    Get PDF
    The Laberge Group is an Early to Middle Jurassic sequence of mostly siliciclastic sedimentary rocks that were deposited in a marginal marine environment in the northern Canadian Cordillera. It forms a long narrow belt with a total thickness of 3–4 km extending for more than 600 km across southern Yukon and northwestern British Columbia. These sedimentary rocks overlap the Yukon-Tanana, Stikinia and Cache Creek terranes that form the main components of the Intermontane superterrane. The Laberge Group contains a record of the erosion of some of these terranes, and also offers some constraints on the timing of their amalgamation and accretion to the Laurentian margin. The Laberge Group was deposited with local unconformity on the Late Triassic Stuhini Group (in British Columbia) and correlative Lewes River Group (in Yukon), both of which are volcanic-rich, and assigned to the Stikinia terrane. The Laberge Group is in turn overlain by Middle Jurassic to Cretaceous clastic rocks, including the Bowser Lake Group in BC and the Tantalus Formation in Yukon. Clast compositions and detrital zircon populations within the Laberge Group and between it and these bounding units indicate major shifts in depositional environment, basin extent and detrital sources from Late Triassic to Late Jurassic. During the Early Jurassic clast compositions in the Laberge Group shifted from sediment- and volcanic-dominated to plutonic-dominated, and detrital zircon populations are dominated by grains that yield ages that approach or overlap their inferred depositional ages. This pattern is consistent with progressive dissection and unroofing of (an) active arc(s) to eventually expose Triassic to Jurassic plutonic suites. Detrital rutile and muscovite data from the Laberge Group indicate rapid cooling and then exhumation of adjoining metamorphic rocks during the Early Jurassic, allowing these to contribute detritus on a more local scale. The most likely source for such metamorphic detritus is within the Yukon-Tanana terrane, and its presence in the Laberge Group may constrain the timing of amalgamation and accretion of the Yukon-Tanana and Stikinia terranes. Thermochronological data also provide new insights into the evolution of the Laberge Group basin. Results from the U–Th/(He) method on detrital apatite suggest that most areas experienced post-depositional heating to 60°C or more, whereas U–Th/(He) results from detrital zircon show that heating to more than 200°C occurred on a more local scale. In detail, Laberge Group cooling and exhumation was at least in part structurally controlled, with more strongly heated areas situated in the footwall of an important regional fault system. The thermochronological data are preliminary, but they suggest potential to eventually constrain the kinematics and timing of inversion across the Laberge Group basin and may also have implications for its energy prospectivity. In summary, the Laberge Group is a complex package of sedimentary rocks developed in an active, evolving tectonic realm, and many questions remain about the details of its sources and evolution. Nevertheless, the available information demonstrates the potential of combined geochronological and thermochronological methods applied to detrital minerals to unravel links between regional tectonics, basin development and clastic sedimentation.Le groupe de Laberge est une sĂ©quence du Jurassique infĂ©rieur Ă  moyen composĂ©e principalement de roches sĂ©dimentaires silicoclastiques qui se sont dĂ©posĂ©es dans un milieu margino-marin, dans le nord de la CordillĂšre canadienne. Il forme une longue ceinture Ă©troite d'une Ă©paisseur totale de 3 Ă  4 km s'Ă©tendant sur plus de 600 km Ă  travers le sud du Yukon et le nord-ouest de la Colombie-Britannique. Ces roches sĂ©dimentaires chevauchent les terranes Yukon-Tanana, Stikinia et Cache Creek qui forment les principales composantes du superterrane Intermontagneux. Le groupe de Laberge contient un enregistrement de l'Ă©rosion de certains de ces terranes, et offre Ă©galement certaines contraintes sur la datation de leur amalgamation et de leur accrĂ©tion Ă  la marge laurentienne. Le groupe de Laberge a Ă©tĂ© dĂ©posĂ© avec une discordance locale sur le groupe de Stuhini du Trias supĂ©rieur (en Colombie-Britannique) et le groupe corrĂ©latif de Lewes River (au Yukon), tous deux riches en volcans et attribuĂ©s au terrane de Stikinia. Le groupe de Laberge est Ă  son tour recouvert de roches clastiques du Jurassique moyen Ă  CrĂ©tacĂ©, comprenant le groupe de Bowser Lake en Colombie-Britannique et la formation de Tantalus au Yukon. Les compositions de clastes et les populations de zircons dĂ©tritiques au sein du groupe de Laberge et entre celui-ci, et ces unitĂ©s limitrophes indiquent des changements majeurs dans l'environnement de dĂ©pĂŽt, l'Ă©tendue du bassin et les sources dĂ©tritiques du Trias supĂ©rieur jusqu’au Jurassique supĂ©rieur. Au cours du Jurassique infĂ©rieur, les compositions des clastes du groupe de Laberge sont passĂ©es d'une prĂ©dominance sĂ©dimentaire et volcanique Ă  une prĂ©dominance plutonique, et les populations de zircons dĂ©tritiques sont dominĂ©es par des grains qui donnent des Ăąges qui se rapprochent ou chevauchent l’ñge prĂ©sumĂ© de leur dĂ©position. Ce modĂšle est cohĂ©rent avec la dissection progressive et le dĂ©voilement d'un ou plusieurs arcs actifs pour Ă©ventuellement exposer les suites plutoniques du Trias au Jurassique. Les donnĂ©es sur le rutile dĂ©tritique et la muscovite du groupe de Laberge indiquent un refroidissement rapide puis une exhumation des roches mĂ©tamorphiques adjacentes au cours du Jurassique infĂ©rieur, permettant Ă  celles-ci d’ajouter des dĂ©bris Ă  une Ă©chelle plus locale. La source la plus probable de ces dĂ©bris mĂ©tamorphiques se trouve dans le terrane Yukon-Tanana, et sa prĂ©sence dans le groupe de Laberge peut apporter des contraintes sur la datation de l'amalgamation et de l'accrĂ©tion des terranes Yukon-Tanana et Stikinia. Les donnĂ©es thermo-chronologiques apportent Ă©galement de nouveaux Ă©clairages sur l'Ă©volution du bassin du groupe de Laberge. Les rĂ©sultats de la mĂ©thode U–Th/(He) sur l'apatite dĂ©tritique suggĂšrent que la plupart des rĂ©gions ont Ă©tĂ© soumises Ă  des conditions de tempĂ©rature post-dĂ©pĂŽt de 60°C ou plus, tandis que les rĂ©sultats U–Th/(He) sur zircon dĂ©tritique montrent que des conditions de tempĂ©rature de plus de 200° C se sont produites Ă  une Ă©chelle plus locale. Dans le dĂ©tail, le refroidissement et l'exhumation du groupe de Laberge Ă©taient au moins en partie structurellement contrĂŽlĂ©s, avec des rĂ©gions plus fortement chauffĂ©es situĂ©es dans le mur d'un important systĂšme de failles rĂ©gionales. Les donnĂ©es thermo-chronologiques sont prĂ©liminaires, mais elles suggĂšrent un potentiel pour Ă©ventuellement contraindre la cinĂ©matique et le moment de l'inversion Ă  travers le bassin du groupe de Laberge et peuvent Ă©galement avoir des implications sur sa capacitĂ© Ă©nergĂ©tique.En rĂ©sumĂ©, le groupe de Laberge est un ensemble complexe de roches sĂ©dimentaires dĂ©veloppĂ©es dans un domaine tectonique actif et en Ă©volution, et de nombreuses questions demeurent quant aux dĂ©tails de ses sources et de son Ă©volution. NĂ©anmoins, les informations disponibles dĂ©montrent le potentiel de la combinaison des mĂ©thodes gĂ©ochronologiques et thermo-chronologiques appliquĂ©es aux minĂ©raux dĂ©tritiques pour dĂ©mĂȘler les liens entre la tectonique rĂ©gionale, le dĂ©veloppement du bassin et la sĂ©dimentation clastique

    The Jurassic Laberge Group in the Whitehorse Trough of the Canadian Cordillera: Using Detrital Mineral Geochronology and Thermochronology to Investigate Tectonic Evolution

    No full text
    The Laberge Group is an Early to Middle Jurassic sequence of mostly siliciclastic sedimentary rocks that were deposited in a marginal marine environment in the northern Canadian Cordillera. It forms a long narrow belt with a total thickness of 3–4 km extending for more than 600 km across southern Yukon and northwestern British Columbia. These sedimentary rocks overlap the Yukon-Tanana, Stikinia and Cache Creek terranes that form the main components of the Intermontane superterrane. The Laberge Group contains a record of the erosion of some of these terranes, and also offers some constraints on the timing of their amalgamation and accretion to the Laurentian margin. The Laberge Group was deposited with local unconformity on the Late Triassic Stuhini Group (in British Columbia) and correlative Lewes River Group (in Yukon), both of which are volcanic-rich, and assigned to the Stikinia terrane. The Laberge Group is in turn overlain by Middle Jurassic to Cretaceous clastic rocks, including the Bowser Lake Group in BC and the Tantalus Formation in Yukon. Clast compositions and detrital zircon populations within the Laberge Group and between it and these bounding units indicate major shifts in depositional environment, basin extent and detrital sources from Late Triassic to Late Jurassic. During the Early Jurassic clast compositions in the Laberge Group shifted from sediment- and volcanic-dominated to plutonic-dominated, and detrital zircon populations are dominated by grains that yield ages that approach or overlap their inferred depositional ages. This pattern is consistent with progressive dissection and unroofing of (an) active arc(s) to eventually expose Triassic to Jurassic plutonic suites. Detrital rutile and muscovite data from the Laberge Group indicate rapid cooling and then exhumation of adjoining metamorphic rocks during the Early Jurassic, allowing these to contribute detritus on a more local scale. The most likely source for such metamorphic detritus is within the Yukon-Tanana terrane, and its presence in the Laberge Group may constrain the timing of amalgamation and accretion of the Yukon-Tanana and Stikinia terranes. Thermochronological data also provide new insights into the evolution of the Laberge Group basin. Results from the U–Th/(He) method on detrital apatite suggest that most areas experienced post-depositional heating to 60°C or more, whereas U–Th/(He) results from detrital zircon show that heating to more than 200°C occurred on a more local scale. In detail, Laberge Group cooling and exhumation was at least in part structurally controlled, with more strongly heated areas situated in the footwall of an important regional fault system. The thermochronological data are preliminary, but they suggest potential to eventually constrain the kinematics and timing of inversion across the Laberge Group basin and may also have implications for its energy prospectivity.In summary, the Laberge Group is a complex package of sedimentary rocks developed in an active, evolving tectonic realm, and many questions remain about the details of its sources and evolution. Nevertheless, the available information demonstrates the potential of combined geochronological and thermochronological methods applied to detrital minerals to unravel links between regional tectonics, basin development and clastic sedimentation.Le groupe de Laberge est une sĂ©quence du Jurassique infĂ©rieur Ă  moyen composĂ©e principalement de roches sĂ©dimentaires silicoclastiques qui se sont dĂ©posĂ©es dans un milieu margino-marin, dans le nord de la CordillĂšre canadienne. Il forme une longue ceinture Ă©troite d'une Ă©paisseur totale de 3 Ă  4 km s'Ă©tendant sur plus de 600 km Ă  travers le sud du Yukon et le nord-ouest de la Colombie-Britannique. Ces roches sĂ©dimentaires chevauchent les terranes Yukon-Tanana, Stikinia et Cache Creek qui forment les principales composantes du superterrane Intermontagneux. Le groupe de Laberge contient un enregistrement de l'Ă©rosion de certains de ces terranes, et offre Ă©galement certaines contraintes sur la datation de leur amalgamation et de leur accrĂ©tion Ă  la marge laurentienne. Le groupe de Laberge a Ă©tĂ© dĂ©posĂ© avec une discordance locale sur le groupe de Stuhini du Trias supĂ©rieur (en Colombie-Britannique) et le groupe corrĂ©latif de Lewes River (au Yukon), tous deux riches en volcans et attribuĂ©s au terrane de Stikinia. Le groupe de Laberge est Ă  son tour recouvert de roches clastiques du Jurassique moyen Ă  CrĂ©tacĂ©, comprenant le groupe de Bowser Lake en Colombie-Britannique et la formation de Tantalus au Yukon. Les compositions de clastes et les populations de zircons dĂ©tritiques au sein du groupe de Laberge et entre celui-ci, et ces unitĂ©s limitrophes indiquent des changements majeurs dans l'environnement de dĂ©pĂŽt, l'Ă©tendue du bassin et les sources dĂ©tritiques du Trias supĂ©rieur jusqu’au Jurassique supĂ©rieur. Au cours du Jurassique infĂ©rieur, les compositions des clastes du groupe de Laberge sont passĂ©es d'une prĂ©dominance sĂ©dimentaire et volcanique Ă  une prĂ©dominance plutonique, et les populations de zircons dĂ©tritiques sont dominĂ©es par des grains qui donnent des Ăąges qui se rapprochent ou chevauchent l’ñge prĂ©sumĂ© de leur dĂ©position. Ce modĂšle est cohĂ©rent avec la dissection progressive et le dĂ©voilement d'un ou plusieurs arcs actifs pour Ă©ventuellement exposer les suites plutoniques du Trias au Jurassique. Les donnĂ©es sur le rutile dĂ©tritique et la muscovite du groupe de Laberge indiquent un refroidissement rapide puis une exhumation des roches mĂ©tamorphiques adjacentes au cours du Jurassique infĂ©rieur, permettant Ă  celles-ci d’ajouter des dĂ©bris Ă  une Ă©chelle plus locale. La source la plus probable de ces dĂ©bris mĂ©tamorphiques se trouve dans le terrane Yukon-Tanana, et sa prĂ©sence dans le groupe de Laberge peut apporter des contraintes sur la datation de l'amalgamation et de l'accrĂ©tion des terranes Yukon-Tanana et Stikinia. Les donnĂ©es thermo-chronologiques apportent Ă©galement de nouveaux Ă©clairages sur l'Ă©volution du bassin du groupe de Laberge. Les rĂ©sultats de la mĂ©thode U–Th/(He) sur l'apatite dĂ©tritique suggĂšrent que la plupart des rĂ©gions ont Ă©tĂ© soumises Ă  des conditions de tempĂ©rature post-dĂ©pĂŽt de 60°C ou plus, tandis que les rĂ©sultats U–Th/(He) sur zircon dĂ©tritique montrent que des conditions de tempĂ©rature de plus de 200° C se sont produites Ă  une Ă©chelle plus locale. Dans le dĂ©tail, le refroidissement et l'exhumation du groupe de Laberge Ă©taient au moins en partie structurellement contrĂŽlĂ©s, avec des rĂ©gions plus fortement chauffĂ©es situĂ©es dans le mur d'un important systĂšme de failles rĂ©gionales. Les donnĂ©es thermo-chronologiques sont prĂ©liminaires, mais elles suggĂšrent un potentiel pour Ă©ventuellement contraindre la cinĂ©matique et le moment de l'inversion Ă  travers le bassin du groupe de Laberge et peuvent Ă©galement avoir des implications sur sa capacitĂ© Ă©nergĂ©tique.En rĂ©sumĂ©, le groupe de Laberge est un ensemble complexe de roches sĂ©dimentaires dĂ©veloppĂ©es dans un domaine tectonique actif et en Ă©volution, et de nombreuses questions demeurent quant aux dĂ©tails de ses sources et de son Ă©volution. NĂ©anmoins, les informations disponibles dĂ©montrent le potentiel de la combinaison des mĂ©thodes gĂ©ochronologiques et thermo-chronologiques appliquĂ©es aux minĂ©raux dĂ©tritiques pour dĂ©mĂȘler les liens entre la tectonique rĂ©gionale, le dĂ©veloppement du bassin et la sĂ©dimentation clastique

    Geology of the Hoodoo Mountain Area (NTS 104B/14W)

    No full text
    International audienc

    Dynamics of accretion of arc and backarc crust to continental margins: inferences from the Annieopsquotch accretionary tract, Newfoundland Appalachians

    No full text
    The Annieopsquotch accretionary tract comprises a thrust stack of Lower to Middle Ordovician arc and backarc terranes that were accreted to the Laurentian margin of Iapetus during Middle to Upper Ordovician. Geological relationships suggest that the constituent terranes of the Annieopsquotch accretionary tract initially formed outboard of a peri-Laurentian Dashwoods microcontinent in an extensional arc, but occupied a lower plate setting with respect to Dashwoods during accretion. Metamorphic mineral assemblages indicate that the terranes were underplated beneath the composite Laurentian margin at depths ranging from ~ 3 km up to > 18 km. We infer the accretion of the terranes to be controlled by the brittle–ductile transition in the hydrated crust. The decoupling of brittle from ductile crust resulted in very high aspect ratios of the terranes, which comprise thin (< 5 km) but very large (up to 25 × 250 km) slabs of supracrustal arc rocks and ophiolite crust. Arc basement and ophiolitic mantle are not preserved and were either underplated at a greater depth or subducted and recycled back in the mantle. The accreted crust forms a reasonable approximation to bulk continental crust requiring little post-accretionary modification; hence, the accretion of arc–backarc complexes which occupy a lower plate setting can form an important mechanism for creation of new continental crust required to balance crustal loss at convergent margins

    A petrochronological approach for the detrital record: Tracking mm-sized eclogite clasts in the northern Canadian Cordillera

    No full text
    Sutures recording the accretion history of the Canadian Cordillera terranes are poorly preserved. The Whitehorse trough syn-orogenic basin formed during early Mesozoic terrane accretion at the western margin of Laurentia and contains a ∌300 m thick horizon that includes eclogite clasts possibly sourced from a suture zone. By applying petrochronological micro-analytical techniques to the mm-diameter eclogite clasts, including thermobarometry and in situ rutile thermochronology, as well as detrital zircon geochronology and thermal diffusion modeling, we constrain a source-to-sink path for the clasts. The eclogite clasts likely reached peak metamorphic conditions of 2.2–2.9 GPa and ≄800 °C, cooled through Pb closure in rutile during Early Jurassic at ≄610 °C and were deposited into the basin by latest Pliensbachian/earliest Toarcian. This history implies minimum mean cooling and exhumation rates on the order of ∌38 °C/myr and ∌4.1 km/myr, respectively, consistent with rates reported for subduction-related eclogite worldwide. We suggest the most likely source for the clasts is the suture between the Yukon–Tanana and Stikinia terranes, involving a latest Triassic collision, followed by rapid Early Jurassic exhumation of the lower plate Yukon–Tanana terrane, either by buoyant extrusion or in a plate boundary zone metamorphic core complex. Our study demonstrates that micro-analytical techniques used for petrochronology can be applied to very small lithic clasts in the sedimentary record towards the tectonic reconstruction of accretionary orogens

    Structural evolution of a crustal-scale shear zone through a decreasing temperature regime: The Yukon River shear zone, Yukon-Tanana terrane, Northern Cordillera

    No full text
    We present the first detailed structural analysis of the Yukon River shear zone (YRSZ), which forms an important structural break within the Yukon-Tanana terrane of the Northern Cordillera in Yukon (Canada). The YRSZ is a NW-SE–striking shear zone that juxtaposes Mississippian orthogneiss hanging-wall rocks (Simpson Range suite) against pre-Late Devonian metasedimentary footwall rocks (Snowcap assemblage). Field and microstructural analyses, including quartz c-axis fabric investigation, indicate that the YRSZ initiated as a top-ESE mid-crustal shear zone active through a temperature range of ≄650–500 °C to ~540–440 °C. Constraints from the footwall associated with top-ESE shearing on the YRSZ at mid-crustal conditions record a decrease in deformation temperature toward the shear zone, coincident with a transition from coaxial to non-coaxial deformation and an increase in fabric intensity, strain rate, and differential stress estimates. Collectively, these spatial trends represent a classic example of a narrowing shear zone that progressively localizes and intensifies deformation as ambient temperature decreases. U-Pb zircon geochronometry of a deformed Permian orthogneiss from within the YRSZ combined with previously published thermochronometry bracket the timing of top-ESE mid-crustal shearing between 259 ± 2 Ma and 176–168 Ma, either during Late Permian–Middle Triassic metamorphism and lithospheric extension or latest Triassic–Early Jurassic metamorphism and crustal thickening. The YRSZ was subsequently reactivated as a top-WNW upper-crustal thrust fault zone during or after Early to Middle Jurassic cooling and exhumation at 176–168 Ma. This top-WNW thrusting within the YRSZ may be responsible for structural separation of Late Triassic and Early Jurassic plutonic rocks in the hanging wall of the YRSZ from Permian plutonic rocks in its footwall
    corecore