178 research outputs found

    Simulations of Electron Capture and Low-Mass Iron Core Supernovae

    Full text link
    The evolutionary pathways of core-collapse supernova progenitors at the low-mass end of the spectrum are beset with major uncertainties. In recent years, a variety of evolutionary channels has been discovered in addition to the classical electron capture supernova channel of super-AGB stars. The few available progenitor models at the low-mass end have been studied with great success in supernova simulations as the peculiar density structure makes for robust neutrino-driven explosions in this mass range. Detailed nucleosynthesis calculations have been conducted both for models of electron capture supernovae and low-mass iron core supernovae and revealed an interesting production of the lighter trans-iron elements (such as Zn, Sr, Y, Zr) as well as rare isotopes like Ca-48 and Fe-60. We stress the need to explore the low-mass end of the supernova spectrum further and link various observables to understand the diversity of explosions in this regime.Comment: 7 page, 3 figures, proceedings of the conference "The AGB-Supernova Mass Transition", to appear in Memorie della Societ\`a Astronomica Italian

    Explosive nucleosynthesis in core-collapse supernovae

    Full text link
    The specific mechanism and astrophysical site for the production of half of the elements heavier than iron via rapid neutron capture (r-process) remains to be found. In order to reproduce the abundances of the solar system and of the old halo stars, at least two components are required: the heavy r-process nuclei (A>130) and the weak r-process which correspond to the lighter heavy nuclei (A<130). In this work, we present nucleosynthesis studies based on trajectories of hydrodynamical simulations for core-collapse supernovae and their subsequent neutrino-driven winds. We show that the weak r-process elements can be produced in neutrino-driven winds and we relate their abundances to the neutrino emission from the nascent neutron star. Based on the latest hydrodynamical simulations, heavy r-process elements cannot be synthesized in the neutrino-driven winds. However, by artificially increasing the wind entropy, elements up to A=195 can be made. In this way one can mimic the general behavior of an ejecta where the r-process occurs. We use this to study the impact of the nuclear physics input (nuclear masses, neutron capture cross sections, and beta-delayed neutron emission) and of the long-time dynamical evolution on the final abundances.Comment: 10 pages, 8 figures, invited talk, INPC 2010 Vancouver, Journal of Physics: Conference Serie

    Proton-Rich Nuclear Statistical Equilibrium

    Full text link
    Proton-rich material in a state of nuclear statistical equilibrium (NSE) is one of the least studied regimes of nucleosynthesis. One reason for this is that after hydrogen burning, stellar evolution proceeds at conditions of equal number of neutrons and protons or at a slight degree of neutron-richness. Proton-rich nucleosynthesis in stars tends to occur only when hydrogen-rich material that accretes onto a white dwarf or neutron star explodes, or when neutrino interactions in the winds from a nascent proto-neutron star or collapsar-disk drive the matter proton-rich prior to or during the nucleosynthesis. In this paper we solve the NSE equations for a range of proton-rich thermodynamic conditions. We show that cold proton-rich NSE is qualitatively different from neutron-rich NSE. Instead of being dominated by the Fe-peak nuclei with the largest binding energy per nucleon that have a proton to nucleon ratio close to the prescribed electron fraction, NSE for proton-rich material near freeze-out temperature is mainly composed of Ni56 and free protons. Previous results of nuclear reaction network calculations rely on this non-intuitive high proton abundance, which this paper will explain. We show how the differences and especially the large fraction of free protons arises from the minimization of the free energy as a result of a delicate competition between the entropy and the nuclear binding energy.Comment: 4 pages, 7 figure

    Evolution of 3-9 Mo Stars for Z=0.001 - 0.03 and Metallicity Effects on Type Ia Supernovae

    Full text link
    Recent observations have revealed that Type Ia supernovae (SNe Ia) are not perfect standard candles but show some variations in their absolute magnitudes, light curve shapes, and spectra. The C/O ratio in the SNe Ia progenitors (C-O white dwarfs) may be related to this variation. In this work, we systematically investigate the effects of stellar mass (M) and metallicity (Z) on the C/O ratio and its distribution in the C-O white dwarfs by calculating stellar evolution from the main-sequence through the end of the second dredge-up for M=3-9 Mo and Z=0.001-0.03. We find that the total carbon mass fraction just before SN Ia explosion varies in the range 0.36 -- 0.5. We also calculate the metallicity dependence of the main-sequence-mass range of the SN Ia progenitor white dwarfs. Our results show that the maximum main-sequence mass to form C-O white dwarfs decreases significantly toward lower metallicity, and the number of SN Ia progenitors may be underestimated if metallicity effectis neglected. We discuss the implications of these results on the variation of SNe Ia, determination of cosmological parameters, luminosity function of white dwarfs, and the galactic chemical evolution.Comment: Added references and corrected typos. To appear in the Astrophysical Journal 1999 March 10 issu

    Neutrino-driven wind simulations and nucleosynthesis of heavy elements

    Full text link
    Neutrino-driven winds, which follow core-collapse supernova explosions, present a fascinating nuclear astrophysics problem that requires understanding advanced astrophysics simulations, the properties of matter and neutrino interactions under extreme conditions, the structure and reactions of exotic nuclei, and comparisons against forefront astronomical observations. The neutrino-driven wind has attracted vast attention over the last 20 years as it was suggested to be a candidate for the astrophysics site where half of the heavy elements are produced via the r-process. In this review, we summarize our present understanding of neutrino-driven winds from the dynamical and nucleosynthesis perspectives. Rapid progress has been made during recent years in understanding the wind with improved simulations and better micro physics. The current status of the fields is that hydrodynamical simulations do not reach the extreme conditions necessary for the r-process and the proton or neutron richness of the wind remains to be investigated in more detail. However, nucleosynthesis studies and observations point already to neutrino-driven winds to explain the origin of lighter heavy elements, such as Sr, Y, Zr.Comment: Submitted to: J. Phys. G: Nucl. Phy

    The X-ray emission from Nova V382 Velorum: I. The hard component observed with BeppoSAX

    Get PDF
    We present BeppoSAX observations of Nova Velorum 1999 (V382 Vel), done in a broad X-ray band covering 0.1-300 keV only 15 days after the discovery and again after 6 months. The nova was detected at day 15 with the BeppoSAX instruments in the energy range 1.8-10 keV and we attribute the emission to shocks in the ejecta. The plasma temperature was kT~6 keV and the unabsorbed flux was F(x)~4.3 x 10(-11) erg/cm**2/s. The nebular material was affected by high intrinsic absorption of the ejecta. 6 months after after the outburst, the intrinsic absorption did not play a role, the nova had turned into a bright supersoft source, and the hot nebular component previously detected had cooled to a plasma temperature kT<=1 keV. No emission was detected in either observation above 20 keV.Comment: 1 tex file, 2 figures as .ps, and 1 .sty file of MNRA

    Nucleosynthesis in ONeMg Novae: Models versus Observations to Constrain the Masses of ONeMg White Dwarfs and Their Envelopes

    Get PDF
    Nucleosynthesis in ONeMg novae has been investigated with the wide ranges of three parameters, i.e., the white dwarf mass, the envelope mass at ignition, and the initial composition. A quasi-analytic one-zone approach is used with an up-to-date nuclear reaction network. The nucleosynthesis results show correlation with the peak temperatures or the cooling timescales during outbursts. Among the combinations of white dwarf and envelope masses which give the same peak temperature, the explosion is more violent for a lower white dwarf mass owing to its smaller gravitational potential. Comparison of the nucleosynthesis results with observations implies that at least two-third of the white dwarf masses for the observed ONeMg novae are ≃1.1M⊙\simeq 1.1 M_\odot, which are significantly lower than estimated by previous hydrodynamic studies but consistent with the observations of V1974 Cyg. Moreover, the envelope masses derived from the comparison are ≳10−4M⊙\gtrsim 10^{-4} M_\odot, which are in good agreement with the ejecta masses estimated from observations but significantly higher than in previous hydrodynamic studies. With such a low mass white dwarf and a high mass envelope, the nova can produce interesting amounts of γ\gamma-ray emitters 7^7Be, 22^{22}Na, and 26^{26}Al. We suggest that V1974 Cyg has produced 22^{22}Na as high as the upper limit derived from the COMPTEL survey. In addition, a non-negligible part of the Galactic 26^{26}Al may originate from ONeMg novae, if not the major contributors. Both the future INTEGRAL survey for these γ\gamma-ray emitters and abundance estimates derived from ultraviolet, optical, and near infrared spectroscopies will impose a severe constraint on the current nova models.Comment: 21 pages, 23 figures, to appear in the Astrophysical Journal, Vol. 523, No.1, September 20, 1999; preprint with embedded images can be obtained from http://th.nao.ac.jp/~wanajo/journal/onenova.p
    • 

    corecore