research

Simulations of Electron Capture and Low-Mass Iron Core Supernovae

Abstract

The evolutionary pathways of core-collapse supernova progenitors at the low-mass end of the spectrum are beset with major uncertainties. In recent years, a variety of evolutionary channels has been discovered in addition to the classical electron capture supernova channel of super-AGB stars. The few available progenitor models at the low-mass end have been studied with great success in supernova simulations as the peculiar density structure makes for robust neutrino-driven explosions in this mass range. Detailed nucleosynthesis calculations have been conducted both for models of electron capture supernovae and low-mass iron core supernovae and revealed an interesting production of the lighter trans-iron elements (such as Zn, Sr, Y, Zr) as well as rare isotopes like Ca-48 and Fe-60. We stress the need to explore the low-mass end of the supernova spectrum further and link various observables to understand the diversity of explosions in this regime.Comment: 7 page, 3 figures, proceedings of the conference "The AGB-Supernova Mass Transition", to appear in Memorie della Societ\`a Astronomica Italian

    Similar works