130 research outputs found

    Characterisation of physico-mechanical properties and degradation potential of calcium alginate beads for use in embolisation

    Get PDF
    High molecular weight alginate beads with 59% mannuronic acid content or 68% guluronic acid were prepared using a droplet generator and crosslinked in calcium chloride. The alginate beads were compared to current embolisation microspheres for compressibility and monitored over 12 weeks for size and weight change at 37°C in low volumes of ringers solutions. A sheep uterine model was used to analyse bead degradation and inflammatory response over 12 weeks. Both the in vitro and in vivo data show good delivery, with a compressibility similar to current embolic beads. In vitro, swelling was noted almost immediately and after 12 weeks the first signs of degradation were noted. No difference was noted in vivo. This study has shown that high molecular weight alginate gel beads were well tolerated by the body, but beads associated with induced thrombi were susceptible to inflammatory cell infiltration. The beads were shown to be easy to handle and were still observable after 3 months in vivo. The beads were robust enough to be delivered through a 2.7 Fr microcatheter. This study has demonstrated that high molecular weight, high purity alginate bead can be considered as semi-permanent embolisation beads, with the potential to bioresorb over time

    The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation

    Get PDF
    Type 2 innate lymphoid cells (ILC2s) both contribute to mucosal homeostasis and initiate pathologic inflammation in allergic asthma. However, the signals that direct ILC2s to promote homeostasis versus inflammation are unclear. To identify such molecular cues, we profiled mouse lung-resident ILCs using single-cell RNA sequencing at steady state and after in vivo stimulation with the alarmin cytokines IL-25 and IL-33. ILC2s were transcriptionally heterogeneous after activation, with subpopulations distinguished by expression of proliferative, homeostatic and effector genes. The neuropeptide receptor Nmur1 was preferentially expressed by ILC2s at steady state and after IL-25 stimulation. Neuromedin U (NMU), the ligand of NMUR1, activated ILC2s in vitro, and in vivo co-administration of NMU with IL-25 strongly amplified allergic inflammation. Loss of NMU-NMUR1 signalling reduced ILC2 frequency and effector function, and altered transcriptional programs following allergen challenge in vivo. Thus, NMUR1 signalling promotes inflammatory ILC2 responses, highlighting the importance of neuro-immune crosstalk in allergic inflammation at mucosal surfaces

    Beneficial effects of parenteral GLP-1 delivery by cell therapy in insulin-deficient streptozotocin diabetic mice.

    Get PDF
    Parenteral delivery of long-Acting glucagon-like peptide-1 (GLP-1) mimetics has received much attention as a therapeutic option for diabetes. However, cell therapy-based GLP-1 treatments may provide a more physiological regulation of blood glucose. The present study assessed the effects of chronic GLP-1 delivery by cell therapy, using the GLP-1-secreting GLUTag cell line, in normoglycemic and streptozotocin-induced diabetic mice. GLUTag cell aggregates were transplanted into the subscapular region of mice. Over 30 days, cellular transplantation gave rise to encapsulated and well-vascularized growths, which contained immunoreactive GLP-1. Cell implantation was well tolerated and had no appreciable metabolic effects in normal mice. However, transplantation significantly (P<0.001) countered excessive food and fluid intake in diabetic mice and maintained normal body weight. Circulating glucose (P<0.01) and glucagon (P<0.05) were significantly reduced and plasma insulin and GLP-1 dramatically increased. This was associated with significantly (P<0.01) improved glucose tolerance in diabetic mice. Histological examination of the pancreata of these mice revealed elevations (P<0.001) in islet and β-cell area, with reduced (P<0.001) -cell area. Increased β-cell mass reflected the enhanced proliferation relative to apoptosis. These studies emphasize the potential of chronic GLP-1 delivery by cell therapy as a potential therapeutic option for diabetes

    Charge Transfer in Model Peptides: Obtaining Marcus Parameters from Molecular Simulation

    Full text link

    In-silico Assessment of Protein-Protein Electron Transfer. A Case Study: Cytochrome c Peroxidase – Cytochrome c

    Get PDF
    <div><p>The fast development of software and hardware is notably helping in closing the gap between macroscopic and microscopic data. Using a novel theoretical strategy combining molecular dynamics simulations, conformational clustering, <i>ab-initio</i> quantum mechanics and electronic coupling calculations, we show how computational methodologies are mature enough to provide accurate atomistic details into the mechanism of electron transfer (ET) processes in complex protein systems, known to be a significant challenge. We performed a quantitative study of the ET between Cytochrome c Peroxidase and its redox partner Cytochrome c. Our results confirm the ET mechanism as hole transfer (HT) through residues Ala194, Ala193, Gly192 and Trp191 of CcP. Furthermore, our findings indicate the fine evolution of the enzyme to approach an elevated turnover rate of 5.47×10<sup>6</sup> s<sup>−1</sup> for the ET between Cytc and CcP through establishment of a localized bridge state in Trp191.</p> </div
    corecore