85 research outputs found

    Research Publication Trends in Indian LIS Journals: A Scientometric Study

    Get PDF
    This paper explores the Scientometric analysis of three reputed library and information science journals published from India such as Annals of Library and information studies (ALIS), SRELS Journal of Information Management and DESIDOC Journal of Library & Information Technology (DJLIT). Total 673 articles published during 2015 to 2019 are analysed by applying Scientometric parameters such as year-wise distribution of articles, authorship pattern, degree of collaboration, relative growth rate , doubling time and productivity trends using Lotka’s etc. Study revealed that the Degree of Collaboration was quite high i.e. 463 (0.69) in terms of collaborators contribution and the value of the relative growth rates (RGR) has decreased from 2015 (0.67) to 2019 (0.19) in the span of five years. The doubling time (DT) value has found increased from 1.03 to 3.64 in the respective years

    Synergistic Activity of Rhamnolipid Biosurfactant and Nanoparticles Synthesized Using Fungal Origin Chitosan Against Phytopathogens

    Get PDF
    Phytopathogens pose severe implications in the quantity and quality of food production by instigating several diseases. Biocontrol strategies comprising the application of biomaterials have offered endless opportunities for sustainable agriculture. We explored multifarious potentials of rhamnolipid-BS (RH-BS: commercial), fungal chitosan (FCH), and FCH-derived nanoparticles (FCHNPs). The high-quality FCH was extracted from Cunninghamella echinulata NCIM 691 followed by the synthesis of FCHNPs. Both, FCH and FCHNPs were characterized by UV-visible spectroscopy, DLS, zeta potential, FTIR, SEM, and Nanoparticle Tracking Analysis (NTA). The commercial chitosan (CH) and synthesized chitosan nanoparticles (CHNPs) were used along with test compounds (FCH and FCHNPs). SEM analysis revealed the spherical shape of the nanomaterials (CHNPs and FCHNPs). NTA provided high-resolution visual validation of particle size distribution for CHNPs (256.33 ± 18.80 nm) and FCHNPs (144.33 ± 10.20 nm). The antibacterial and antifungal assays conducted for RH-BS, FCH, and FCHNPs were supportive to propose their efficacies against phytopathogens. The lower MIC of RH-BS (256 μg/ml) was observed than that of FCH and FCHNPs (>1,024 μg/ml) against Xanthomonas campestris NCIM 5028, whereas a combination study of RH-BS with FCHNPs showed a reduction in MIC up to 128 and 4 μg/ml, respectively, indicating their synergistic activity. The other combination of RH-BS with FCH resulted in an additive effect reducing MIC up to 128 and 256 μg/ml, respectively. Microdilution plate assay conducted for three test compounds demonstrated inhibition of fungi, FI: Fusarium moniliforme ITCC 191, FII: Fusarium moniliforme ITCC 4432, and FIII: Fusarium graminearum ITCC 5334 (at 0.015% and 0.020% concentration). Furthermore, potency of test compounds performed through the in vitro model (poisoned food technique) displayed dose-dependent (0.005%, 0.010%, 0.015%, and 0.020% w/v) antifungal activity. Moreover, RH-BS and FCHNPs inhibited spore germination (61–90%) of the same fungi. Our efforts toward utilizing the combination of RH-BS with FCHNPs are significant to develop eco-friendly, low cytotoxic formulations in future

    The relevance of fungi in astrobiology research – Astromycology

    Get PDF
    Since the very first steps of space exploration, fungi have been recorded as contaminants, hitchhikers, or as part of missions’ crews and payloads. Because fungi can cause human disease and are highly active decomposers, their presence in a space-linked context has been a source of major concern given their possible detrimental effects on crews and space structures. However, fungi can also be beneficial and be used for many space applications. The exact effects on fungi are not always clear as they possess high adaptability and plasticity, and their phenotypes and genotypes can undergo several changes under the extreme conditions found in space, thus leading to different results than those we would have on Earth. Understanding and analysing these aspects is the subject of astromycology, a research field within astrobiology. The impending situation of a resurgent space race is expected to boost astromycology’s visibility and importance. However, researchers lack both a framework and a solid base of knowledge from which to contextualise their work. This critical review addresses this gap by conceptualising the field of astromycology, covering key research and current questions pertaining to the field, and providing a relevant research instrument for future work

    Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass <i>Zostera muelleri</i>

    Get PDF
    © 2017, Springer Science+Business Media B.V. Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy coastal ecosystems. Despite its ecological importance, little is known about the pathways of carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this study, the response of Z. muelleri exposed to control and very low oxygen conditions was investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to measure changes in photosynthesis and respiration, and (ii) reverse transcription quantitative real-time PCR to measure changes in expression levels of key genes involved in C4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. muelleri, a characteristic of C3 mechanism of carbon assimilation, and (ii) decreased the expression levels of phosphoenolpyruvate carboxylase and carbonic anhydrase. These molecular-physiological results suggest that regulation of the photophysiology of Z. muelleri might involve a close integration between the C3 and C4, or other CO2 concentrating mechanisms metabolic pathways. Overall, this study highlights that the photophysiological response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the dynamic modulation of pathways should be considered when assessing seagrass primary production

    Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life

    Get PDF
    Background: Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results: In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions: These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence

    Role of Drug Repurposing in Cancer Treatment and Liposomal Approach of Drug Targeting

    Get PDF
    Cancer is the leading cause of death, and incidences are increasing significantly and patients suffering from it desperately need a complete cure from it. The science of using an already-invented drug that has been approved by the FDA for a new application is known as “drug repurposing.” Currently, scientists are drawn to drug repositioning science in order to investigate existing drugs for newer therapeutic uses and cancer treatment. Because of their unique ability to target cancer cells, recently repurposed drugs and the liposomal approach are effective in the treatment of cancer. Liposomes are nanovesicles that are drastically flexible, rapidly penetrate deeper layers of cells, and enhance intracellular uptake. More importantly, liposomes are biocompatible, biodegradable; entrap both hydrophobic and hydrophilic drugs. This chapter summarizes various approaches to drug repurposing, as well as drug repurposing methods, advantages and limitations of drug repurposing, and a liposomal approach to using repurposed drugs in cancer targeting. This chapter also summarizes liposomal structure, drug loading, and the mechanism of liposomes in targeted cancer treatment. The lipid-based liposomal approach is emerging as a powerful technique for improving drug solubility, bioavailability, reducing side effects, and improving the therapeutic efficacy of repurposed drugs for cancer treatment

    Chemical composition of leaves of halophytes and sediments in estuarine habitat

    Get PDF
    104-106Leaves of Aeluropus lagopoides (L.), Ceriops tagal (Perr.) and Lumnitzera racemosa (Willd) along with soil and water surrounding rootzone are studied for their mineral constituents. Leaves of Lumnitzera are rich in Na and Cl content than Aeluropus and Ceriops. Aeluropus shows efficient K uptake and shows maximum Fe, Mn, P and N2 content than Ceriops and Lumnitzera. The estuarine soil where the plants are located is sandy in nature with pH 7, while surrounding water is slightly alkaline. Analysis of leaves for organic constituents shows that these halophytes have almost same moisture percentage and carbohydrate content. Ceriops is rich in polyphenol content. Maximum proline is present in leaves of Lumnitzera while Aeluropus leaves show maximum chlorophylls indicating that different halophytes located in same habitat show difference in organic and inorganic constituents

    A New record of <em>Hypnea spinella </em>(C.Agardh), Kutzing from Sindhudurg District of Maharashtra, India

    Get PDF
    2321-2323The present investigation deals with the systematic studies on marine red alga Hypnea spinella (C.Agardh), Kutzing from Kunakeshwar. Hypnea spinella (C.Agardh), Kutzing belong to the group Rhodophyceae is the most common seaweed found on the Maharashtra coast. However, knowledge about the distribution of the species is insufficient. Hypnea constitute new record reported from the Sindhudurg district along the west coast of Maharashtra. Morphologically and anatomically, characters were systematically studied. This addition can enrich our knowledge of algal flora along the west coast of Maharashtra and can be used for food, medicine and industrial purpose

    <em>Syzygium cumini</em> Mediated Green Synthesis of Silver Nanoparticles for Reduction of 4-Nitrophenol and Assessment of its Antibacterial Activity

    No full text
    The biosynthesis of silver nanoparticles (AgNPs) has become more significant in the recent years owing to its applications in catalysis, imaging, drug delivery, nano-device fabrication and in medicine. We propose the synthesis of silver nanoparticles from the plant extract of Syzygium cumini and evaluation of its antibacterial and chemocatalytic potential. Synthesis of AgNPs carried out by using aqueous silver nitrate. The UV–Vis absorption spectrum of the synthesized AgNPs showed a broad absorption peak at 470 nm. TEM analysis shows the morphology of AgNPs as a hexagonal matrix with average particle size is about 50 nm. XRD analysis displays the crystalline structure of AgNPs. The presence of elemental silver was confirmed with EDX analysis. FTIR analysis shows that amide groups present in proteins are dominant reducing agents and play an important role in the bioreduction of Ag+ ions to Ag0. The bioreduced AgNPs demonstrated significant catalytic properties in a reduction reaction of 4-nitrophenol to 4-aminophenol using NaBH4 in an aqueous condition. The biosynthesized AgNPs have potent antibacterial activity against common clinical pathogens. Considering the remarkable antibacterial activity against common pathogenic microorganisms, AgNPs can be used in the pharmaceutical industries
    corecore