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Abstract 

Since the very first steps of space exploration, fungi have been recorded as contaminants, 

hitchhikers, or as part of missions’ crews and payloads. Because fungi can cause human disease and 

are highly active decomposers, their presence in a space-linked context has been a source of major 

concern given their possible detrimental effects on crews and space structures. However, fungi can 

also be beneficial and be used for many space applications. The exact effects on fungi are not 

always clear as they possess high adaptability and plasticity, and their phenotypes and genotypes 

can undergo several changes under the extreme conditions found in space, thus leading to different 

results than those we would have on Earth. Understanding and analysing these aspects is the subject 

of astromycology, a research field within astrobiology. 
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The impending situation of a resurgent space race is expected to boost astromycology’s 

visibility and importance. However, researchers lack both a framework and a solid base of 

knowledge from which to contextualise their work. This critical review addresses this gap by 

conceptualising the field of astromycology, covering key research and current questions pertaining 

to the field, and providing a relevant research instrument for future work. 
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1. Introduction  

 

1.1 Astromycology – an Emergent Research Topic 

Fungi are ubiquitous on Earth (where they play unique ecological roles) and in its atmosphere 

(DasSarma et al. 2020, Šantl-Temkiv et al. 2022), and can even be found in the most extreme 

environments (Gostinčar et al. 2022a), such as the frigid soils of Antarctica (Durán et al. 2019), the 

irradiated walls of the Chernobyl Nuclear Power Plant (Zhdanova et al. 2004), and in the saline and 

hypersaline waters of our oceans (Gunde-Cimerman et al. 2000, Amend et al. 2019). It is thus not 

surprising that fungi have even been found in seemingly unusual and nutrient-deprived outer-space 

environments. Various moulds and yeasts have been found hitchhiking aboard the International 

Space Station (ISS) (Novikova et al. 2006) and have been regularly reported in several missions 

since the early days of space exploration. 

As increasingly stronger interest and resources are being spent exploring scientific and 

technological capabilities in space, it is imperative to understand the ecological roles of fungi and 

their full impact on human activity outside our planet. Research dealing with the intersection 

between astrobiology and mycology – astromycology – is nascent and still growing as more 

researchers begin to explore questions regarding this area and as the space economy continues to 

grow (De Middeleer et al. 2019, Horne et al. 2022, Urbaniak et al. 2022). The research field of 
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fungal systems in space has been developed for quite some time, ever since biological processes 

were taken into consideration in space science. However, researchers lack both a framework and a 

foundational basis of knowledge that they can draw to contextualise their work examining fungi 

and space. 

Astromycology is at the interface between astrobiology and mycology. However, the field of 

astrobiology does not fully encompass the applied and concrete nature of astromycology that 

examines current-day microbes (Case et al. 2022). Whereas astrobiology studies the fundamental 

questions of life, its origin, and its evolution on Earth and potentially elsewhere (see section 1.2), 

astromycology concerns the presence, evolution, implications, and applications of fungi in 

extraterrestrial environments. This emerging discipline applies space science to mycology and 

incorporates ideas and tools from diverse areas of research (e.g., geology, biology, genetics, 

immunology, plant pathology, and agriculture) to better understand how fungi will continue to 

evolve and play a role in space environments, especially with regard to potential benefits and 

threats to human space presence. 

Defining “astromycology” as a specific field will help to increase visibility and promote 

further opportunities for collaboration and funding, as well as support critical research and 

understanding of astrobiology, biophysics, and fungal ecology. The field has substantial breadth 

and depth, touching on topics ranging from contamination and human health to extremophiles and 

radiobiology. Nowadays, more than ever, inter- and multi-disciplinarity are key to scientific 

development as no research field develops on its own. 

Therefore, here we discuss astromycology as the interdisciplinary and multidisciplinary 

scientific subfield of astrobiology (detailed in Section 1.2) that focuses on fungal life (addressed in 

Section 1.3). To demonstrate the expanding research being done in this discipline, we highlight all 

key research topics within astromycology (Section 2). 

 

1.2 The Advent of Astrobiology 

The question of whether life may exist elsewhere in the universe is as old as humanity itself, 

and, from the beginning of space exploration, a consequent scientific interest arose: the exploration 

of life in space. Ary J. Sternfeld wrote about “the birth of a new science whose main objective is to 

assess the habitability of the other worlds” in his 1935 article “Life in the Universe”, which is one 

of the early references to the word “astrobiology” (Sternfeld 1935, Briot 2012). Later references to 

this field include a 1941 article by Laurence J. Lafleur, entitled “Astrobiology” and published in 

Leaflet No. 143 of the Astronomical Society of the Pacific (Lafleur 1941), while Gabriel Tikhov 

published the paper “Astrobiologii” in 1953 (Tikhov 1953). 

Defining scientific fields can be a complex task and it is not always a relevant asset when 

knowledge and science constantly evolve, change, and expand their breadth and depth. Moreover, if 

we have not found a precise definition of life (Cockell 2020), how can we properly define a field 

that is focused on its study? Interestingly, up until now, there has been no agreement on a 

consensual definition of astrobiology. 

Many well-known dictionaries give somewhat different astrobiology definitions, such as a 

“multidisciplinary field dealing with the nature, existence, and search for extraterrestrial life 

beyond Earth” (Encyclopaedia Britannica) or a “branch of biology concerned with the search for 

life outside the Earth and with the effects of extraterrestrial environments on living organisms” 

(Merriam Webster), presenting it as a synonym of exobiology. In turn, exobiology has also been 

used since the 1960s, when Joshua Lederberg defined the objective of exobiology as “to compare 

the overall patterns of chemical evolution of the planets, stressing those features which are globally 

characteristic of each of them” (Lederberg 1960). Pioneer sampling and studies analysed life at 

high elevations, but eventually ended up extending to the different layers of our atmosphere and 

into space (DasSarma et al. 2020). These were the early days of space biology, now referred to as 

Astrobiology (Soffen 1997, Chyba & Hand 2005, DasSarma et al. 2020). 

Astrobiology, defined by Soffen (1997) as “the scientific study of the origin, distribution, 

evolution, and future of life in the universe”, is a highly interdisciplinary field that relates several 
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disciplines such as biology, chemistry, geology, astronomy, physics, engineering, planetary 

sciences, and Earth sciences. In 2001, with the start of the National Aeronautics and Space 

Administration (NASA) Astrobiology Program, astrobiology was defined as “the study of the 

origin, evolution, distribution, and destiny of life in the universe” (Morrison 2001). In “The 

Astrobiology Primer: an outline of general knowledge, version 1, 2006”, astrobiology is defined as 

“the study of life as a planetary phenomenon”, aiming to “understand the fundamental nature of life 

on Earth and the possibility of life elsewhere” (Billings et al. 2006). Ten years later, “The 

Astrobiology Primer v2.0” (Domagal-Goldman et al. 2016), defined astrobiology as “the science 

that seeks to understand the story of life in our universe”. More recently, in the document “Origins, 

worlds, and life: a decadal strategy for planetary science and astrobiology 2023-2032” (National 

Academies of Sciences, Engineering, and Medicine 2022), astrobiology is simply defined as “the 

study of the origin and evolution of life on planetary bodies”. 

A critical impulse for the nascent field of astrobiology took place in 1996, with the discovery 

of potential evidence of life in the Martian meteorite ALH 84001 (McKay et al. 1996); the first 

astrobiology scientific conference was also held in that same year. Then, in 1998, the NASA 

Astrobiology Institute (NAI) was established “to develop the field of astrobiology and provide a 

scientific framework for flight missions” (Blumberg 2003). Ending in 2019, the NAI was a 

successful virtual organisation that integrated astrobiology and training programs with the 

international science communities for two decades. NASA’s 2000 Space Science Strategic Plan 

(NASA 2000) explains that “astrobiology intends to expand exobiology research and encompass 

areas of evolutionary biology to further our understanding of how life may persist and evolve to 

exert a global environmental influence”, defining three main questions (How does life begin and 

develop? Does life exist elsewhere in the universe? What is life’s future on Earth and beyond?) 

along with ten related main goals, listed at www.hq.nasa.gov/office/codez/plans/SSE00plan.pdf. 

Over time, several focus areas for astrobiology research have been identified by different 

publications: the NASA Astrobiology Roadmap (Des Marais et al. 2008), the European 

Astrobiology Roadmap (Horneck et al. 2016), the Astrobiology Primer (Domagal-Goldman et al. 

2016), as well as more recent, equivalent discussions in China (Lin et al. 2020). Those areas 

include: research on extreme environments, life-detection missions on Mars, the composition of icy 

moons of our solar system (e.g., Enceladus and Europa) (O’Rourke et al. 2020), and the search for 

potentially habitable exoplanets (Brack et al. 2010). 

Since first mentioned in the 1930s, astrobiology has grown to have its own peer-reviewed 

focused journals (Section 3.2) and more than eleven thousand publications, which include more 

than five hundred reviews according to Clarivate Analytics (ISI Web of Knowledge, 

www.webofscience.com/wos/woscc/basic-search). 

One of the main pillars of astrobiology is the study of the limits of life and how terrestrial 

organisms survive and adapt to extreme extraterrestrial conditions, namely in the so-called 

terrestrial analogue environments. Microorganisms are the best survivors and thrivers in conditions 

that we consider extreme in the context of life in space (Cockell 2020). They can affect and take a 

toll on: astronauts’ health (e.g., Landry et al. 2020, Simões & Antunes 2021), habitat safety (e.g., 

Pierson 2001, Yamaguchi & Nasu 2015, Landry et al. 2020), and planetary protection (e.g., 

Benardini & Moissl-Eichinger 2022, Horne et al. 2022). Microorganisms are also major assets for 

the study of the origin of life (e.g., of fungal life – Onofri et al. 2007, Berbee et al. 2017, Loron et 

al. 2019, Berbee et al. 2020, Saxena et al. 2021) and its limits (e.g., Rothschild & Mancinelli 2001, 

Pikuta et al. 2007). 

With an ever-expanding list of potentially habitable exoplanets (Krissansen-Totton et al. 

2022) and a very active exploration program of the planets of the solar system (Enya et al. 2022), 

astrobiology is currently a healthy scientific field, expected to enter a golden age in the near future, 

when the first signs of life beyond our planet might be finally detected (Impey 2022). 

 

1.3. Fungi (on Earth) 

1.3.1. Fungal Diversity and Evolution 
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The number of fungal species on Earth is still subject to debate. One of the first and most 

accredited appraisals was proposed by Hawksworth (1991), who estimated 1.5 million based on, 

among other metrics, a ratio of about six fungal species per plant. With the advent of molecular 

approaches for species delimitation, and after the publication of primers targeting the fungal 

nuclear ribosomal internal transcribed spacer (ITS) region in 1990 (White et al. 1990), the rate of 

species discovery increased dramatically. Estimates were revised to values between 2 and 13.2 

million fungal species on Earth (Blackwell 2011, Simões et al. 2013, Hawksworth & Lücking 2017, 

Wu et al. 2019). Whatever the true number of fungal species might be, the number of formally 

described taxa, even though it is continuously increasing, currently stands at 51,568 species 

according to the global catalogue of microorganisms (https://gcm.wdcm.org, accessed on Jul, 

2023), and this accounts for a negligible portion of total fungal diversity (Simões et al. 2013, 

Hawksworth & Lücking 2017, Phukhamsakda et al. 2022). 

Fungi have always been controversial organisms. Initially, researchers struggled to even 

define which organisms should be included in this kingdom, as most traditional classification 

systems were based solely on morphology, leading to some ambiguity in this group. Certain fungi, 

such as yeasts, do not show enough differentiating morphological features (e.g., shape, colour, and 

size of various structures), while others display different characteristics depending on their asexual 

or sexual states. Deoxyribonucleic acid (DNA) sequencing initiated a cascade event that allowed a 

wider understanding of the differentiation and polymorphisms of these organisms (Blackwell 

2011), but the highly diverse morphological features (Fig. 1) can still be highly valuable for species 

recognition. 

 

 
 

Figure 1 – Morphological diversity of fungi, showcased by several examples of species schemes 

available at BioRender.com. a) Corn infected with Ustilago maydis. b) Schizophyllum commune.  

c) Cortinarius rubellos. d) Leucoagaricus leucothites. e) Candida sp. f) Alternaria alternate.  

g) Mucor sp. h) Histoplasma sp. i) Chytridiomycota division species, with rhizomes. j) Neurospora 

crassa. k) Powdery mildew fungus conidia. l) Penicillium sp. m) Powdery mildew fungus 
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germinating spore. n) Arbuscular mycorrhiza. o) Oomycete (sporulation). p) Metschnikowia 

gruessii. q) Hypha. r) Candida sp. s) Coccidioides sp. (arthroconidia). t) Malassezia sp. u) 

Aspergillus sp. v) Fusarium sp. Created with BioRender.com. 

 

Physiological characteristics, such as growth rate and production of pigments, are also used 

for the recognition of some species (Geiser et al. 2007), while traditional dichotomous keys are still 

widely used in fungal taxonomy (e.g., Navi et al. 1999, Watanabe 2010, Tsurykau & Etayo 2017, 

Corazon-Guivin et al. 2019, Zheng et al. 2020). 

We now have a clearer perception of the boundaries of the kingdom Fungi and its taxonomic 

diversity (Fig. 2). 

 

 
 

Figure 2 – Fungal taxa and relationships between major fungal groups, derived from the Joint 

Genome Institute (JGI) database, the MycoCosm Fungal Portal 

(https://mycocosm.jgi.doe.gov/mycocosm/home), accessed on March 11, 2023 (Grigoriev et al. 

2014). 

 

Divergence time studies suggest that almost all true fungi have a single common ancestor. 

Also, the earliest terrestrial fungi may have evolved around 1000 million years ago (MYA) 

(Heckman et al. 2001), originating from aquatic fungi and becoming the dominant life forms on 

Earth around 250 MYA (Loron et al. 2019). Adaptation to the terrestrial environment may have 

been facilitated by symbiotic associations, as suggested by evidence of arbuscular mycorrhizae in 

the earliest fossil fungi (460 MYA) (Berbee et al. 2017). Fossil traces of early fungi, 

morphologically very close to Glomeromycota, are known to have formed the first 
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endomycorrhizal symbiotic associations (Harper et al. 2020). The remarkable frequency of fossil 

fungi increasing in the Tertiary Period suggests that their proliferation is related to the 

diversification of angiosperms, which occurred around 400 MYA (Blackwell 2000, Webster & 

Weber 2007, Massini et al. 2012, Taylor et al. 2014, Wijayawardene et al. 2020). Many studies 

have proven that, although the first fungi were unicellular and probably marine, their evolution co-

occurred with an increase in size, complexity, structure, and functions (Webster & Weber 2007). 

Furthermore, their interactions with other organisms, such as plants, were the main reason for the 

development of Earth’s atmosphere, as mentioned by Blackwell (2000) and reviewed by Berbee et 

al. (2017). 

The undeniably broad effects of fungi on Earth’s ecosystems can be noted in the genomes of 

plants, on the chemistry of soils, and even in the function of animals’ immune systems (Peay et al. 

2016). 

 

1.3.2 Fungi General Characteristics 

Fungi are eukaryotic organisms with a cell structure showing a few peculiarities, such as the 

presence of ergosterol (a type of cyclic lipid) in their cell membranes. Their cell walls are 

composed of polysaccharides, such as glucans (fibrillar glucose polymers with ß-1,3 ß-1,6 

glycosidic bonds) and chitin (N-acetylated glucosamine units linked by ß-1,4 glycosidic bonds) 

(Garcia-Rubio et al. 2020), which are important targets in antifungal therapies. 

Fungi are known for their wide metabolic competences and the capability to produce a vast 

number of secondary metabolites. They release a wide range of extracellular enzymes that are 

fundamental for breaking down the matter that serves as their substrate, followed by further 

digestion and product absorption through the cell wall. These enzymes also play an important role 

in biodeterioration and biocorrosion (Gutarowska 2010), reasons for which fungi are used in 

various applications. 

Fungal secondary products can also have a direct impact on health. Fungal pathogens rely on 

their digestive enzymes to penetrate natural host barriers (Hoffmeister & Keller 2007, Lavrin et al. 

2020), while some secondary metabolites can also act as mycotoxins, which are low-molecular-

weight substances that may have carcinogenic, mutagenic, nephrotoxic, hepatotoxic, or neurotoxic 

effects. On the other hand, many important pharmaceuticals have been developed from fungal 

secondary metabolites (Bills & Gloer 2016, Keller 2019). The best-known examples are the β-

lactam antibiotics, including penicillins and cephalosporins. Among the roughly 33,500 bioactive 

microbial metabolites that have been described, about 47% (15,600) are of fungal origin (Bills & 

Gloer 2016). 

Fungi are extremely adaptable organisms, with a striking tendency to explore new 

environments. They can exploit new resources, form novel associations, and take advantage of the 

suite of traits that they carry when encountering a new condition (Zalar et al. 2011, Selbmann et al. 

2013). Fungi display a considerable degree of morphological plasticity and may, for instance, 

promptly shift from one growth form to another according to physical or chemical conditions. They 

are unicellular (yeasts) when immersed in rapidly fermentable sugar or when they are in their 

infective phase (as seen for most human pathogens or during vascular plant invasion). 

Alternatively, they may exhibit filamentous growth, a “search for food” growth form that allows 

them to inspect their surroundings, or they may even switch to meristematic growth to optimise the 

surface/volume ratio when exposed to stressful conditions. Fungi have complicated life cycles with 

sexual, asexual, and parasexual phases (Gostinčar et al. 2022b). These phases can differ 

morphologically and often ecologically, displaying different requirements. In another unusual 

characteristic, fungi do not need to complete their life cycle. Depending on the surrounding 

environmental conditions, sometimes they can focus only on a part of their life cycle to 

successfully autoperpetuate and disseminate via spores (Peraza-Reyes & Malagnac 2016). 

Fungal spores play a vital role in the fungal survival strategy and their overall resilience. 

These microscopic structures may remain metabolically inactive if they do not meet proper 

environmental conditions for germination and persist in a quiescent or dormant state even after 
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prolonged periods (Blatzer & Latgé 2021). Under the proper environmental circumstances, spores 

can then germinate and become vegetative cells (Sephton-Clark & Voelz 2018, Blatzer & Latgé 

2021). 

Fungal spores can have a wide variety of morphologies (Van Leeuwen et al. 2010) and are 

largely distinguished by their reproduction process (Samanta 2015), which can be asexual 

(arthrospores, blastospores, chlamydospores, conidiospores or conidia, and sporangiospores) or 

sexual (ascospores, basidiospores, oospores, and zygospores). As an example, Aspergillus niger 

spores are formed asexually via conidiophores, which can extend up to 460 µm due to the 

formation of aerial hyphae (Cortesão et al. 2022). Due to this morphological property, chains of 

fungal spores can be lifted above the laminar airflow, which makes it easier for the spores to be 

released via high airflow and liquid streams. 

Fungal spores can survive extreme temperatures and germinate as soon as optimal 

temperatures prevail, with the need for only very low water activity to germinate compared to 

bacteria (Gibson et al. 1994). Light and the composition of the surrounding atmosphere may also 

play a role in spore germination (Fuller et al. 2015). Additionally, most spores, e.g., of highly 

abundant filamentous fungi, such as Aspergillus spp. and Penicillium spp., are highly stress-

resistant against environmental factors like drought, ultraviolet (UV) radiation, heat (Cortesão et al. 

2020a), or cold (Sonjak et al. 2006). Due to their often pigmented, thick cell walls and their already 

mentioned ability to go into a dormant (low metabolism) state, they are essential for fungi to 

withstand harsh conditions and are one of the main factors ensuring their survival fitness (Dantigny 

& Nanguy 2009). 

Filamentous fungi (also known as moulds) are a distinct group of fungi that are of particular 

relevance for several fields. They are spore formers (i.e., they reproduce and disperse by 

sporulation), mycotoxin emitters, biofilm producers, and material degraders, and may create 

complex hyphal networks, which are the substantial basis for the fungus to colonise very diverse 

substrates. Fungi can grow in a wide range of temperatures, and according to their optimum, they 

are classified as psychrophiles, mesophiles, and thermophiles. Some filamentous species are 

eurytherms, and they may adapt well to environments experiencing wide temperature variations (0–

40 °C) (Dix & Webster 1995). 

 

1.3.3 Fungal ecology in space-relevant environments 

In general, fungi have been recognized as essential components in terrestrial, aerial, and 

aquatic environments. Their vital roles in the processes and functioning of our planet’s ecosystems 

are becoming clearer as more details are constantly uncovered (Berbee et al. 2020, Anees-Hill et al. 

2022). In terrestrial environments, fungi are major decomposers of woody and herbaceous 

substrates, as well as of dead animals and animal parts. Fungi produce organic compounds 

contributing to soil carbon storage, transform organic nitrogen or phosphorus, and form symbiotic 

associations that increase net primary productivity rates (Treseder & Lennon 2015). They are also 

important pathogens of plants and animals and may form symbiotic relationships with a wide range 

of organisms (Hyde et al. 1998, Perini et al. 2022). In particular, in oligotrophic environments, their 

role is fundamental in contributing to primary production and efficiently recycling the limited 

resources available (Perini et al. 2019, 2022). 

Some species, known as (poly)extremophiles, best represented by polyphyletic black yeasts 

(Selbmann et al. 2020), have evolved a variety of morphological and physiological adaptations that 

allow them to thrive in multiple extremes and even survive exposure to space conditions. 

Adaptations to extreme conditions (e.g., pH, temperature, salinity, hydrostatic pressure) are 

complex and interconnected. They include morphological changes, such as polymorphic changes 

that enable switching from filamentous form to unicellular yeast cells and meristematic clumps, 

increase and remodelling of extra polymeric substances (EPS), and ability to form biofilms. The 

molecular responses involve rigorous changes in gene expression that lead to subsequent synthesis 

of compatible solutes, changed composition of the cell membrane, regulation of intracellular alkali-

metal cations, and changed cell-wall ultrastructure and morphology. The high osmolarity glycerol 
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(HOG) branched mitogen-activated protein kinase (MAPK) signal-transduction system is used for 

sensing increased osmolarity of the medium, and heavy-metal and temperature stress. Increased 

expression of genes involved in energy production and oxidative damage protection was seen under 

different extreme conditions along with a lack of the classical heat and cold shock response (HSR 

and CSR, respectively) and in some cases even decreased levels of common stress proteins (Tesei 

2022). Moreover, additional cellular strategies with potential roles in these fungi 

polyextremotolerance involve the modulation of non-coding and circular RNAs (circRNAs), and 

fusion transcripts, as recently brought to light by transcriptomics analyses (Blasi et al. 2015). These 

conditions also induce changes in the level or production of extracellular metabolites and enzymes 

active at extreme physicochemical values in the environment. Within such organisms, we can have 

true extremophiles, which display an obligate need for one or more extreme conditions to grow 

(Gostinčar et al. 2019a), and extremotolerant organisms, which can tolerate extreme values of one 

or more physico-chemical parameters (Rampelotto 2013, Gostinčar et al. 2019b, Zajc et al. 2019). 

Understanding these patterns of tolerance provides us tools for defining the boundaries for 

habitability on our planet and may help us understand how life evolved on Earth and what types of 

life forms might, or might not, be found on other planetary bodies in our solar system and beyond. 

Among the environments that are considered optimal models for studying adaptations of life in 

analogue conditions of extraterrestrial environments, the Antarctic, Atacama deserts, and polar 

glaciers have attracted considerable attention for being considered current Mars analogues (Azua-

Bustos et al. 2017, Perini et al. 2019, Azua Bustos et al. 2022, Touchette et al. 2022) and have been 

the targets of different mycological studies. 

Microorganisms dominate terrestrial and glacial environments in the polar regions. Fungal 

diversity has been intensively studied in different regions of Antarctica and Arctic, from permafrost 

to ice sheets and glaciers (Flint & Stout 1960, Lawley et al. 2004, Cowan et al. 2014, Czechowski 

et al. 2016, Canini et al. 2020, Canini et al. 2021, Perini et al. 2021, 2022). Most researchers 

reported specificities in the diversity influenced by local environmental parameters and without 

consistent latitudinal trends (Cowan et al. 2014, Canini et al. 2020, Malcheva et al. 2020). The soil 

communities are mainly dominated by the divisions Ascomycota, (with Dothideomycetes and 

Eurotiomycetes, two close classes, as the most abundant), followed by Basidiomycota, 

Mortierellomycota, and Chytridiomycota (De Menezes et al. 2019, Canini et al. 2021), while in 

glacial environments basidiomycetous yeasts prevail (Perini et al. 2019, 2011) (check Fig. 2, for a 

clear picture of relationships between different groups). However, as confirmed by many studies, 

our knowledge of Antarctic fungal diversity is still partial, as many of the sequences retrieved in 

recent molecular studies do not correspond to any known taxa, further confirming that our 

knowledge of global fungal diversity is still limited (Lawley et al. 2004, Scalzi et al. 2012, 

Selbmann et al. 2015, Czechowski et al. 2016, Selbmann et al. 2017, Coleine et al. 2018,  

De Menezes et al. 2019, Durán et al. 2019, Perini et al. 2019, Canini et al. 2020, Coleine et al. 

2020, Canini et al. 2021). 

Where the climatic conditions become too harsh for life exposed on the rock or soil surfaces, 

fungi retreat to subglacial environments or the interior of rocks (Perini et al. 2019). Porous rocks 

enable better protection, creating hotspots of microbial diversity. Antarctic rocks have been 

suggested to contribute to soil microbial diversity since rock powder generated by bio-weathering 

processes is easily blown away by winds (Friedmann 1982). Whereas the porosity of rocks provides 

a more protected niche, it is still not clear if microorganisms can survive in the soil. It was 

hypothesised that only the most resistant ones would survive, but it has yet to be determined 

whether they are metabolically active or present as dormant or dead wind-transported spores and 

propagules (Carini et al. 2016). On the other hand, subglacial environments harbour rich 

communities of basidiomycetous yeasts and fungi of the genus Penicillium, that are released into 

the adjacent environment, either permafrost or the ocean, as a result of accelerated glacial thawing 

(Sonjak et al. 2006, Butinar et al. 2007, Sonjak et al. 2007). Dothideomyces and Eurotiomycetes 

were reported as the most abundant components of Antarctic cryptoendolithic fungal communities, 

mostly colonising sandstone rocks distributed throughout Victoria Land and beyond (Zucconi et al. 
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2016, Selbmann et al. 2017, Coleine et al. 2018, 2020), while basidiomycetous yeast from the 

genera Cryptococcus, Naganishia, and Rhodotorula, to mention just a few, are released in glacial 

forefields and in the sea environment (Selbmann et al. 2017). 

Such prior studies reported the existence of a noticeable, rather peculiar group of melanized, 

microcolonial, slow-growing, and morphologically poorly differentiated fungi, highly adapted to 

Antarctic and Arctic environmental constraints, which attracted the attention of scientists due to 

their bewildering physiological flexibility. Fungi of this morphological group identified in polar 

areas belong to two main classes: Dothideomycetes (with the order Capnodiales, and in particular 

families Teratosphaeriaceae and Cladosporiaceae) and Eurotiomycetes (with the order 

Chaetothyriales) (Selbmann et al. 2015, Perini et al. 2021, 2022, Zajc et al. 2022). 

Fungal studies in the Atacama Desert, the driest and oldest desert on Earth (Hartley et al. 

2005, Sun et al. 2018), and a well-known Mars analog model (Azua-Bustos et al. 2022), have been 

recently reviewed by Santiago et al. (2018). These authors reported a list of all the lichenized and 

free-living fungi isolated in different substrata, highlighting their metabolic and biotechnological 

potentialities, and suggesting their application as model organisms in astrobiological studies. 

Among other species reported in this desert from its Coastal Range, through the hyperarid core, to 

the Andes Mountains, there are epilithic species such as Hortaea werneckii (Zalar et al. 2019), non-

lichenized fungi such as Alternaria, Ascobolus, Aspergillus, Cladophialophora, Cladosporium, 

Eupenicillium, Gibberella, Leptosphaerulina, Monodictys, Penicillium, Periconia, Ulocladium, and 

Ustilago (Conley et al. 2006), and species like Cladosporium halotolerans, Penicillium citrinum 

and Penicillium chrysogenum reported in epilithic and endolithic environments (Gonçalves et al. 

2016). Other species, such as Neocatenulostroma, also found inside gypsum rocks, have been 

studied in search of detectable biosignatures such as melanin (Culka et al. 2017), while others, such 

as Caloplaca orthoclada (synonym: Follmannia orthoclada), have been reported as part of lichens 

(Castillo & Beck 2012), with a number of other species (Cryptococcus, Cladosporium, 

Ulocladium) been reported around fumaroles up to 6000 m high in the Andes Mountains in front of 

the Atacama (Costello et al. 2009). In turn, a yet to be identified species of fungi was found 

growing as epi- and endoliths in gypsum rocks (Wierzchos et al. 2011) of another site of the 

hyperarid core, while Aspergillus atacamensis and Aspergillus salisburgensis were reported 

growing inside a cave of the Coastal Range (Martinelli et al. 2017). Interestingly a diversity of 

viable cells of fungal species (Ophiosphaerella herpotricha, Aspergillus versicolor, Chaetomium 

globosum, Cladosporium bruhnei, Aspergillus nidulans, Penicillium chrysogenum) have been 

shown to use wind-transported dust particles (Azua-Bustos et al. 2019), and able to traverse, thus 

colonise, the entire Atacama in but a few hours. 

Yeasts are common inhabitants of extreme environments, including Antarctic and Arctic 

regions, deserts, glaciers, ice sheets, and space stations like the ISS (Buzzini et al. 2018, Checinska 

Sielaff et al. 2019, Perini et al. 2019, 2021). A recent study isolated and identified 21 yeast species, 

including five new species, from the Qaidam Basin desert in China, the highest desert in terms of 

altitude and one of the driest deserts on Earth, which harbours Mars-like extreme environments 

(Wei et al. 2022). The yeasts isolated were dominated by basidiomycetous species and strains 

isolated from hypersaline soil samples exhibited elevated salt-tolerance (Wei et al. 2022). 

Although the vast majority of fungi do not exhibit pathogenic traits, a limited number, 

including those that populate extremely cold environments, can cause infections in plants and 

animals (including humans) (Perini et al. 2019, Sun et al. 2020). According to the Leading 

International Fungal Education (LIFE, http://en.fungaleducation.org/) platform estimations, over 

80% of the world’s population (more than 5.7 billion people) are affected by serious fungal 

infections (Bongomin et al. 2017). Given that space exploration is frequently linked with crewed 

missions, fungal infections also need to be considered in these alternative extreme environments, 

particularly as many microbes (including fungi) have been recorded in space stations as Earth 

contaminants or as crew members’ microbiota (as discussed in Section 2.2). 

 

2. Astromycology roadmap and research developments 
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2.1 Fungi, Planetary Protection, and Cleanrooms 

Planetary protection is a major concern for space agencies and governments, as sought by the 

Committee of Space Research’s (COSPAR) Planetary Protection Policy (COSPAR 2020). 

COSPAR defends responsible exploration of other worlds by safeguarding space and planetary 

bodies from Earthly microbes (forward contamination), and avoiding the Earth’s contamination 

with (potentially harmful) extraterrestrial agents (backward contamination) (Rummel et al. 2020, 

Horne et al. 2022). The increasing number of space agencies and public and private space sector 

start-ups makes regulatory mechanisms critical to prevent potential contamination of unexplored 

celestial bodies and backward contamination of our planet. In fact, while it is unlikely that Earthly 

life could easily proliferate in the inhospitable conditions of other planets, any type of 

contamination by terrestrial microbes could seriously compromise the search for biological 

signatures of extant or extinct life forms. Therefore, it is crucial to refocus worldwide efforts to 

safeguard the space and extraterrestrial environments (Cheney et al. 2020, Gunde-Cimerman et al. 

2018) and to evaluate microbial survivability in spacecraft or planetary analogues of possible 

astrobiology-relevant targets (Moissl-Eichinger et al. 2016, Cassaro et al. 2021a), for a more 

accurate assessment and regular refinement of actual contamination hazards (Rettberg et al. 2019). 

The principle of “planetary protection” was established in 1967 within the “Outer Space 

Treaty” (which acts as the legal framework and basis for international space law) when it was 

(originally) signed by the three depository Governments (the Russian Federation, the United 

Kingdom, and the United States of America). Signatory countries (which currently extend to 112 

and include all major spacefaring nations) agreed on nine essential principles for conducting 

activities in space (https://treaties.unoda.org/t/outer_space). One of these principles mentions that 

“no foreign planet should be influenced in its development by the entry of terrestrial flora and 

fauna” (Dittel & Vogt 2021). To meet this objective, COSPAR officially suggests strict planetary 

protection measures for extraterrestrial missions. 

The most rigorous protocols of planetary protection and consistent contamination control 

guidelines have been in place for many years now, meeting high standards of biological cleanliness. 

Almost all activities and preparations for space travel are done in International Organization for 

Standardization (ISO) 8 – ISO 5 cleanrooms while adhering to rigorous European Cooperation for 

Space Standardization (ECSS) classifications such as those set forth in standards like ISO 14644 

and ECSS-Q-ST-70-58C (http://esmat.esa.int/ecss-q-st-70-58c.pdf), as is the case at the NASA Jet 

Propulsion Laboratory (JPL)’s spacecraft assembly facility (SAF) (Danko et al. 2021). Many 

planetary protection-sensitive missions, including the Mars 2020 Perseverance rover that was 

launched in 2020, were built using such cleanroom facilities. 

The protocols and guidelines currently in place include extensive and routine microbial 

monitoring (Mora et al. 2016a), state-of-the-art high-efficiency particulate air (HEPA) filters, as 

well as consistent measures of control to prevent or reduce any existing bioburden. The standard 

guidelines for decontaminating cleanroom interiors include the usage of 70% isopropyl alcohol 

(IPA), 7.5% hydrogen peroxide in wipes, and ultraviolet C (UVC) light (Lalime & Berlin 2016). 

For validating any applied sterilisation measures, official planetary protection policies suggest 

considering specific sterilisation bioindicator organisms. These usually consist of bacterial 

endospores of Bacillus spp., as they show high resistance to radiation-based decontamination 

measures as well as space and other extreme environmental conditions (Nicholson et al. 2005, 

Moeller et al. 2014, Cortesão et al. 2019). Current regulations limit the detected bioburden found 

during spacecraft assembly, integration, and testing. For example, sensitive missions like the 

robotic lander systems being used to investigate extant Martian life have restricted surface 

bioburden to 3,000,000 spores (COSPAR 2020). 

Despite these control efforts, research on the microbiome of SAFs has found distinct and 

mostly human-associated microbial communities within and around cleanroom environments 

(Venkateswaran et al. 2014a, Moissl-Eichinger et al. 2015, Bashir et al. 2016, Mora et al. 2016b, 

Regberg et al. 2018, Hendrickson et al. 2021). It is worth noting that, in most of these studies, the 

microbial profiling was focused on bacterial populations and that most planetary protection 
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programs are based specifically on bacterial spore resistance (Nicholson et al. 2012, Onofri et al. 

2012). However, a few studies have investigated fungal presence. This was the case in a recent 

study on surfaces from the assembly, testing, and launching facility of the OSIRIS-REx, a 

spacecraft that collected samples from the near-Earth asteroid (101955) Bennu (Regberg et al. 

2020). Fungal DNA was detected, although for this mission there were no bioburden restrictions in 

place. Detected fungi included: Articulospora proliferata, Cladosporium delicatulum, Itersonilia 

pannonica, Phaeosphaeria caricicola, Sistotremastrum spp., Udeniomyces pyricola, and 

Zymoseptoria spp. 

In general, filamentous fungi traces and spores were and are still underrepresented in most 

research when it comes to microbial monitoring, despite being recognized as acceptable 

bioindicators for planetary protection. This under-representation is particularly puzzling, as it has 

been proven that the spores of these widely prevalent eukaryotes can be equally or even more 

robust to harsh environmental conditions than bacterial endospores (Onofri et al. 2007, de Vera et 

al. 2012, Pacelli et al. 2017a, Coleine et al. 2022a), namely in terms of resistance to UVC (Onofri et 

al. 2007, Dadachova & Casadevall 2008, Neuberger et al. 2015, Cortesão et al. 2020a, Cortesão et 

al. 2021), UVB (Selbmann et al. 2011), gamma and E-beam radiation (Blank & Corrigan 1995, 

Pacelli et al. 2017a, 2017b), desiccation (Onofri et. al, 2012, 2015, Dijksterhuis 2019), vacuum and 

other atmospheres (Silverman et al. 1967, Sarantopoulou et al. 2011, Neuberger et al. 2015, Pinto et 

al. 2020), temperature (Onofri et al. 2007, Pacelli et al. 2019, Dijksterhuis 2019, Coleine et al. 

2022b), acid (Van Laere 1986, Zuo et al. 2022), and peroxide-based cleaning agents (Visconti et al. 

2021). 

Prevention and sterilisation of fungal contamination have become increasingly relevant also 

because some common fungal genera can germinate, grow, and tolerate environments with a low 

water activity (Segers et al. 2016, Gunde-Cimerman et al. 2018) and low oxygen (Perrone & Susca 

2017). Thus, understanding fungal spore resistance, especially under decontamination procedures, 

should be recognized as essential for planetary protection, as it already is for the food and medical 

sectors (Sharma et al. 2015, Misra et al. 2019). These sectors have provided helpful insights into 

the resilience of fungal spores to decontamination, such as surface sterilisation using plasma-

ionised gas and UV radiation in the food and medical industries (Sharma et al. 2015, Misra et al. 

2019). Given the variety of fungi identified in all space missions analysed so far, it is critical to 

develop appropriate containment measures for fungal growth and to select the most practical 

materials. This will aid in avoiding unwanted fungal growth, minimise health risks, and prevent the 

contamination of structures and spacecraft components. 

Although an Earth-analogue of the ISS habitat is not available, the amount of data on 

microbial species available in NASA cleanrooms makes these facilities the best-characterised 

closed environments with limited human traffic (Checinska et al. 2015). Earth cleanrooms have a 

lower prevalence of cultivable microorganisms than the ISS, implying that: 1) regular cleaning is 

required to reduce microbial burden in closed habitats; and, 2) accurate estimations of viable 

population size can help identify potential contaminations (e.g., as done through the coupling of 

propidium monoazide – PMA treatment with Next-Generation Sequencing – NGS) (Checinska et 

al. 2015). 

The risks of failing to assess and contain fungal contamination are obvious. As an example, 

terrestrial fungal contaminants, mostly Penicillium spp., were found inside the cleanroom storing 

meteorite samples at NASA’s Johnson Space Center (JSC) in Houston, Texas (Regberg et al. 

2018). This underscores the possibility that the search for life in off-world samples may be highly 

affected by fungal contamination. 

 

2.2 Fungal contaminants in space habitats 

There is a long historical record of fungal detection in space habitats. Fungi were first 

detected aboard Salyut 6, a Soviet orbital space station, the eighth station of the Salyut programme 

(Makimura et al. 2001). Later, they were also found aboard the first modular space station, the 

Soviet Mir, and its mycoflora was examined in several studies. Viktorov et al. (1992) isolated 
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filamentous and yeast-like fungi and identified 36 species belonging to 12 different genera. In a 

later study, the fungi Penicillium rubens and Aspergillus sp. were identified among the responsible 

for the degradation of a navigation window at Mir (Klintworth et al. 1999). Makimura et al. (2001) 

isolated six strains from air collected on board the Russian 1997 Mir-Space Station (mission 

J/MM), and identified them by morphological analysis and molecular techniques (18S- and ITS1-

rDNA sequences) as A. versicolor, Penicillium sp., and Penicillium chrysogenum (renamed  

P. rubens). Shnyreva et al. (2001) also analysed samples from Mir using random amplified 

polymorphic DNA (RAPD) markers and found 21 fungal strains, isolated from different polymeric 

materials and air inside the station, all belonging to the Eurotiales order, mostly Aspergillus and 

Penicillium genera. 

Fungi were also detected in several NASA missions. Numerous fungal species from diverse 

genera (Alternaria, Aspergillus, Botrytis, Candida, Cephalosporium, Cladosporium, Fusarium, 

Mucor, Penicillium, Phoma, and Trichoderma) were recovered, up to 1998, from spacecraft 

belonging to the Apollo missions (10, 11, 14, and 15), Skylab, shuttles, and astronauts (Schuerger 

1998). During the Apollo 14 and 15 missions to the moon, despite a three-week quarantine, 57 

fungal and actinomycetes genera were found on human and spaceship surfaces (Gonzales et al. 

1996). 

More recently, several studies have also been conducted at the ISS. Novikova et al. (2006), 

analysed the microbial load on air and surface samples during nine missions and seven Soyuz 

flights to the station, over a period of six years. They found over 30 different fungal species, with 

Aspergillus and Cladosporium being the most dominant genera. Several of those species were 

found to be opportunistic contaminants involved in the biodegradation of structural materials 

(polymers and metallic surfaces), affecting their integrity and leading to potential short circuits and 

malfunctioning (Novikova et al. 2006). According to Haines et al. (2019), the main sources of fungi 

detected in aerosols collected at the ISS were foods and plants, justifying the detection of a higher 

abundance of the species Cyberlindnera jadinii (common food additive) and Penicillium paczoskii 

(now Penicillium glabrum), followed by less abundant: Acremonium alternatum, Aspergillus 

pseudodeflectus, Rhodotorula mucilaginosa (an emerging opportunistic pathogenic yeast), 

Fusidium griseum, Fusarium oxysporum (specifically found infecting experimental plants in an ISS 

experiment), Gibberella intricans (now Fusarium equiseti), Gyrothrix verticiclada (now Peglionia 

verticiclada), Idriella rara, Neoascochyta paspali, Papiliotrema laurentii, and Penicillium 

digitatum (Haines et al. 2019). 

The ISS air and surface microbiome has been studied using both culture-based and molecular 

methods. During the ISS Expedition 31, after reports of excessive dust and allergic symptoms from 

several crew members, the mycobiome of several areas was analysed. Several opportunistic 

pathogenic fungal species of the genera Aspergillus, Candida, Cryptococcus, and Trichosporon 

were found, representing 32% of the total number of sequences. Allergen species from the genera 

Aspergillus and Penicillium were also found, representing an additional 17% of the total sequences. 

Besides these, other disease-associated species were found at this time: Candida parapsilosis, 

Penicillium spinulosum, and Penicillium aurantiogriseum, associated with sepsis and wound 

infection, lung inflammation, and renal disease, respectively. Furthermore, the plant pathogenic 

species Dothidiomycetes spp., Fusarium equiseti, and P. digitatum were also detected (9% of the 

total sequences), probably due to the existing experiments with plants at that time (Venkateswaran 

et al. 2014b). 

Aspergillus candidus, A. niger, Aspergillus terreus, and Aspergillus unguis, along with 

Penicillium as the second most dominant genus, were among 19 strains isolated from ISS dust 

samples (Checinska et al. 2015). The same genera, with the species P. chrysogenum and  

A. versicolor, were also found as the commonest contaminants on the Mir space station (Makimura 

et al. 2001). These genera have also been commonly reported as the most abundant contaminants 

isolated from two SAFs at the JPL and Kennedy Space Center (KSC) (Blachowicz et al. 2022a).  

A viable fungal community with a predominance of R. mucilaginosa and P. chrysogenum was 

found on different ISS surfaces collected during three flight missions and analysed upon return to 
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Earth (Checinska Sielaff et al. 2019). Aspergillus fumigatus, an opportunistic fungal threat to 

human health, was also found on ISS surfaces (Checinska Sielaff et al. 2019), raising concerns 

about the potential health impact on astronauts. Even though comparative genomics of A. fumigatus 

ISS isolates and clinical Earth strains revealed no significant differences, the former demonstrated 

enhanced lethality in a vertebrate model, implying higher virulence in space environments (Knox et 

al. 2016). 

Satoh et al. (2021) analysed the fungal diversity at the Japanese Experiment Module KIBO 

(ISS; experiments Microbe-I, II, III, and IV) over a period of seven years. They found Aspergillus 

and Penicillium to be the dominant genera when using culture-dependent methods, and Malassezia 

(a monophyletic genus commonly found on human skin) when using DNA analysis. From those 

strains, they studied the species Aspergillus sydowii, Penicillium palitans, and R. mucilaginosa, 

which grew in the microgravity environment of KIBO, and they found no novel phenotypic 

characteristics or significant differences in antifungal susceptibility from prior reports of the 

corresponding fungi. 

 

2.2.1 Fungal contamination sources, monitoring, and control 

Space stations provide useful case studies on sources of fungal contamination, monitoring, 

and control. The main reason for the transmission of diseases related to filamentous fungi and, 

moreover, for the accumulation of fungal contaminants on touch surfaces and building materials at 

the ISS is the human-carried contamination (Venkateswaran et al. 2014a, Mora et al. 2016b). In 

addition to this factor, food and plants are other well-established sources of fungal contamination, 

particularly in aerosols (Haines et al. 2019) 

In space habitats, the relative air humidity of the cabin environment is kept at about 60% 

(three times higher than in regular aircrafts), which facilitates fungal growth. Other factors inside 

the ISS enhance the development of fungi: air ventilation, water circulation, and oxygen and 

nitrogen distribution, all of which run as closed systems. Once a fungal colony colonises life-

support systems, decontamination and sterilisation are highly challenging, especially since 

microgravity facilitates fungal spores’ dispersal. Therefore, moisture control, ventilation, and air 

filtration systems with HEPA filters serve as countermeasures against air pollution in aircraft and 

spacecraft. According to the International Air Transport Association (IATA), HEPA filters are used 

as recirculation filters and can effectively capture 99 % of the airborne microbes in the filtered air. 

However, some studies have reported limitations of these filtration systems, suggesting that they 

can become point sources of contamination (since fungi were detected growing inside HEPA filters 

in use at the ISS) and highlighting the need for regular and continuous environmental monitoring 

(Price et al. 2005, Vesper et al. 2008). 

Efforts to prevent microbial growth inside the ISS are directed towards reducing moisture and 

free water. Moreover, astronauts are forced to regularly decontaminate commonly touched surfaces 

and wet areas (such as toilet surfaces) (Vesper et al. 2008, Yamaguchi et al. 2014), combined with 

weekly cleaning with a vacuum cleaner and antiseptic towelettes containing 0.4% benzalkonium 

chloride (Satoh et al. 2021). Unfortunately, some common and effective disinfectants used in 

terrestrial indoor environments are not an option. One prime example is hydrogen peroxide (used as 

a liquid or as vapour), a chemical that cannot be freely used in space as it could form dangerous 

droplets that could disperse throughout the spacecraft, due to microgravity. To guarantee the 

maintenance of water and air quality at the ISS, the following measures are put in place: 

supplementation of water with iodide or ionic silver compounds, and HEPA filters as an integral 

part of all air distribution systems (Satoh et al. 2021). As recently stated by the World Health 

Organization (2018) and several other studies (e.g., Ottoni et al. 2017, da Silva et al. 2022, Khan et 

al. 2022), using silver as a disinfectant for drinking water is a preventative approach that can 

minimise microbial development. 

Another risk associated with fungal contaminants is the production of certain harmful 

compounds. This was noted early on, as studies have found that the high concentration of airborne 

fungi on Mir (which fluctuated between 2 x 104 and 5 x 104 CFU/m3; Novikova 2004) were 
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associated with high levels of detectable mycotoxins (ochratoxin A – OTA) (De Middeleer et al. 

2019). Strategies to control fungal exposure in space are specifically stated in the ISS medical 

operations requirements document (ISS MORD SSP 50260, https://emits.sso.esa.int/emits-

doc/ESTEC/AO6216-SoW-RD9.pdf). State-of-the-art strategies to control and monitor fungal and 

mycotoxin exposure in space habitats are almost exclusively directed towards risk assessment and 

risk management of mycotoxins within the environment. 

The main methods used for monitoring fungal agents inside enclosed space habitats are 

similar to those used in terrestrial environmental settings. Microbial detection is conventionally 

done through culture-dependent methods, usually through surface swabs for sample collection (Van 

Houdt et al. 2012). In addition to swabbing surfaces, sampling can also involve the collection of air 

with an air sampler. Culture-independent methods have become more relevant due to the growing 

awareness of mycotoxins and fungal products like volatile organic compounds (VOCs), which are 

low-molecular-weight organic compounds that easily evaporate at room temperature (Pennerman et 

al. 2016, Inamdar et al. 2020). Furthermore, as culture-dependent methods are time-consuming and 

unable to detect low microbial contamination levels, culture-independent molecular methods are 

more adequate for spaceflight and aviation because they facilitate rapid analysis and allow for 

consistent and frequent screening. However, regular screenings have not been reported for all types 

of detection, e.g., mycotoxin levels on the ISS or in aircrafts, as part of systematic air quality 

controls. 

Spaceflight is known to enhance microbial proliferation, activity, and virulence (Benoit & 

Klaus 2007, Rosenzweig et al. 2010, Taylor 2015), and there is ample evidence that increased 

biomass and biofilm thickness are generated under microgravity conditions (Crabbé et al. 2013, 

Sathishkumar et al. 2016, Wang et al. 2021). Not only are highly proliferating microorganisms 

more difficult to keep at bay, even under strict cleaning protocols, but spacecraft-associated species 

can also be resistant to antimicrobial agents and have the potential to degrade spacecraft cleaning 

reagents (Mogul et al. 2018). 

 

2.3 Fungi exposed to space 

Fungi have been exposed to space under several different circumstances, including real space 

conditions (Section 2.3.1), as well as simulated conditions for single or multiple parameters, similar 

to those found in real space (Section 2.3.2). 

Several types of environmental extremes are considered relevant for exposure experiments 

and have been the subject of a range of targeted experiments aimed at assessing different microbial 

groups and relevant conditions in different parts of the solar system (e.g., Wu et al. 2022). Such 

testing has traditionally been split into experiments conducted in orbit and under simulated 

conditions in ground-based experiments. These started with balloon experiments with fungal spores 

around 1935s, rocket experiments in the 1950s and 1960s, satellite and moon expeditions, and long-

time orbit experiments followed by space missions in the 1980s and 1990s (Kern & Hock 1993). 

 

2.3.1 Exposure experiments to real space conditions 

Radiation and oxidant species are considered major challenges to the search for life beyond 

Earth. The Earth’s magnetic field and its atmosphere protect the terrestrial surface, but the space 

environment and the surfaces of other planets in our solar system are reached by various types of 

radiation. High-energy electromagnetic waves from our sun (UV, gamma, and X-rays) and 

subatomic particles from the universe characterise the radiation environment (electrons, protons, 

neutrons, and heavy ions). A heavily ionising core and a penumbra where energy is transferred by 

far-reaching secondary electrons can be found in high-energy radiation (Baltschukat et al. 1986). 

When this energy collides with microorganisms or biomolecules, it can cause cellular damage by 

generating direct energy absorption effects on biomolecules (such as nucleic acids and proteins) 

and secondary effects from radiation-induced radicals (radiolysis) (Moeller et al. 2010). Numerous 

studies have been done and are still being done under specific conditions, such as microgravity, 

galactic cosmic radiation, solar UV radiation, and space vacuum, to better understand the survival 
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or development of life in space (Horneck et al. 2010). These were analysed in both real and 

simulated laboratory settings. 

Regarding fungal characteristics that allow them to survive such exposure testing, we 

highlight a few examples. The ability of melanin-producing fungi (i.e., from the genera Aspergillus, 

Penicillium, and Cryomyces) to survive the vacuum of space and Mars-simulated conditions in low 

Earth orbit (LEO) has been associated in part with the protective effects of melanin (Horneck et al. 

1999, Panitz et al. 2001, Onofri et al. 2012, 2015, 2019, Pacelli et al. 2019, Cortesão et al. 2020a). 

The importance of melanins in fungal resilience to exposure experiments is worth stressing and is 

further discussed in Section 2.3.4. 

In addition to melanin, it has been proven that filamentous fungi and yeasts possess complex 

regulatory networks and molecular processes that ensure a sophisticated DNA damage repair 

system, based on nucleotide excision (NER), mismatch repair (MMR), and the mechanism of 

homologous recombination (HR). In this process, a defective site is cut out of the DNA by enzymes 

(recombinases) and repaired. In non-homologous end joining (NHEJ), the two fragments are 

rejoined after a DNA double-strand break without a homologous DNA sequence acting as a 

template (Sinha & Häder 2002). 

Spacecraft, space stations, and shuttles have closed environments that allow for many 

different mycological experiments and have been used for these scopes (summarised in Table 1). 

Understandably, such experiments with exposure to real space conditions are somewhat limited and 

conducted in small numbers. Not all researchers have access to space facilities or outer space 

environments, and concerns regarding biological load are always too wide-scoped and rarely 

focused on fungi. Although this perspective is now changing, there are still clear gaps in coverage 

that need to be addressed. 

So far, there are only reports of two fungal species belonging to the phylum Basidiomycota 

being exposed to space conditions. Furthermore, within the phylum Ascomycota, studies tend to 

focus on a limited number of species, with most studies focusing on the genera Cryomyces, 

Aspergillus, and Penicillium. 

 

2.3.2 Studies using ground-based simulations 

Space conditions can be simulated in laboratory settings. These are a more accessible way of 

assessing fungal adaptations to space-like conditions and are thus better studied (Table 2). 

It is clear that environmental stress can affect fungal strains’ growth and survival, and that the 

space environment can favour the growth of some fungal species. However, the number of fungal 

species tested is still very limited, with almost all strains analysed belonging to the phylum 

Ascomycota. Among all species, only three yeasts were studied: C. albicans, for being a common 

human-pathogen; Saccharomyces cerevisiae, for being a well-known and researched budding yeast 

species; and Debaryomyces hansenii, for being a well-known halotolerant yeast. More tests are 

necessary; different species need to be analysed, especially now that there is a boom in planning for 

long-term missions. 

 

2.3.3 Cryomyces antarcticus – a detailed case-study of fungal survival under real and simulated 

space exposure 

One noteworthy fungal species regarding exposure experiments and fungal resilience is 

Cryomyces antarcticus. This cryptoendolithic endemic black fungus, first isolated from sandstone 

collected at Linnaeus Terrace, McMurdo Dry Valleys, Southern Victoria Land (Antarctica), has 

been selected for several space exposure experiments. Taking advantage of the possibility to 

allocate samples outside the ISS by the European Space Agency (ESA) exposure facility EXPOSE, 

the fungus was exposed to real space conditions in LEO, in two ESA experiments: LIchen and 

Fungi Experiment (LIFE, Scalzi et al. 2012) and BIOlogy and Mars EXperiment (BIOMEX, de 

Vera et al. 2019), detailed in Table 3. 
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Table 1 Mycological experiments under real space conditions. 

 
Fungi Space condition Exposure 

details 

Effects observed References 

Phylum Class Species 

Ascomycota 

Dothideomycetes 

Cryomyces 

antarcticus 

Microgravity, 

Radiation, simulated 

Mars conditions, 

Mars artificial 

regoliths 

Dried colonies 

outside the ISS 

(EXPOSE-E, 

EXPOSE-R2) 

12% survival to full outer 

space exposure, including 

cold, ionising and UV 

radiation up to 900 kJ. 

Growth on phyllosilicatic 

(78% of the samples) and 

sulfatic (40% of the samples) 

Mars artificial regoliths. 

Survival under Mars 

simulated atmosphere and 

radiation. 

de Vera et al. (2019), 

Onofri et al. (2012, 2015, 

2019) 

Microgravity, 

Radiation, simulated 

Mars conditions, 

Mars and lunar 

artificial regoliths 

Dried colonies 

outside the ISS 

(EXPOSE-R2) 

Preservation of DNA and 

melanin – still detectable 

after exposure (can be used as 

biosignatures). 

Pacelli et al. (2021a), 

Cassaro et al. (2022a, b) 

Cryomyces minteri Microgravity, 

Radiation 

Dried colonies, 

outside the ISS 

(EXPOSE-E) 

Extensive DNA mutations 

after 1.5-year exposure. 

Onofri et al. (2018) 

Ulocladium 

chartarum 

Microgravity, 

Radiation 

ISS (Solid 

media) 

Formation of microcolonies, 

changes in colony growth, but 

no changes in spore viability. 

Gomoiu et al. (2013, 

2016) 

Eurotiomycetes 

Aspergillus 

fumigatus 

Microgravity, 

Radiation 

ISS isolate Enhanced growth and 

increased virulence. 

Knox et al. (2016) 

Microgravity, 

Radiation 

ISS isolate Increased abundance of 

proteins involved in stress 

responses, carbohydrate and 

secondary metabolism. 

Blachowicz et al. (2019a) 

Aspergillus 

nidulans 

Microgravity, 

Radiation 

ISS Changes in stress response 

and secondary metabolites. 

Romsdahl et al. (2019) 
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Table 1 Continued. 

 
Fungi Space condition Exposure 

details 

Effects observed References 

Phylum Class Species 

  Aspergillus niger Microgravity, 

Radiation 

ISS isolate Enhanced production of 

naphtho-γ-pyrones and 

secondary metabolites 

(bicoumanigrin A, 

aurasperones A and B, and 

pyranonigrin A). 

Romsdahl et al. (2020) 

   Microgravity, 

Radiation 

ISS No changes in spore viability. Gomoiu et al. (2013) 

Penicillium 

expansum 

Microgravity, 

Radiation 

Outside the ISS Increase of polysaccharide 

capsule and melanin layer. 

Dadachova & Casadevall 

(2008) 

Penicillium rubens 

(formerly  

P. chrysogenum) 

Microgravity, 

Radiation 

Outside the ISS No changes in morphology or 

antifungal susceptibility. 

Satoh et al. (2016) 

Microgravity Biofilms in 

several surface 

materials, 

ISS 

No changes in the shape of 

biofilms, on the biomass 

growth, thickness, and surface 

area coverage in stainless 

steel 316, aluminum alloy, 

titanium alloy, carbon Fiber, 

quartz, silicone, and 

nanograss. 

Hupka et al. (2023) 

 Saccharomycetes Saccharomyces 

cerevisiae 

Microgravity, 

Radiation 

Soyus and ISS Up-regulation of proteins 

linked to anaerobic 

conditions. Random budding 

patterns. Reduced invasive 

growth. 

Van Mulders et al. 

(2011) 

Sordariomycetes 

Fusarium 

oxysporum 

Microgravity, 

Radiation 

ISS isolate Higher abundance of PKS 

domains. 

Urbaniak et al. (2019) 

Sordaria 

macrospora 

Microgravity Space Shuttle 

and Mir 

No changes in crossing‐over 

frequencies under 

microgravity. Increased gene 

recombination frequencies 

under heavy ion radiation. 

Hahn & Hock (1999) 
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Table 1 Continued. 

 
Fungi Space condition Exposure 

details 

Effects observed References 

Phylum Class Species 

Basidiomycota 

Agaricomycetes 

Polyporus 

brumalis 

Microgravity Orbital space 

flight aboard the 

uncrewed Soviet 

biosputnik 

After 20 days aboard, the 

fruiting body presented 

negative gravitropism. 

Zharikova et al. (1977) 

Flammulina 

velutipes 

Microgravity D-2 mission, 

Space Shuttle 

Columbia 

Grown in space for 8 days. 

Gravimorphogenesis of 

developing fruiting body with 

random orientation (flat and 

helically twisted stipes), with 

an accumulation of cytosolic 

vesicles at the lower part of 

the stipe. 

Kern & Hock (1996) 

Tremellomycetes Cryptococcus 

neoformans 

Microgravity, 

Radiation, space 

flight general 

conditions 

ISS Melanized yeasts survived 

50% more than non-melanized 

yeasts following roundtrip and 

29 days inside the ISS. 

Cordero et al. (2022) 

ISS = International Space Station, DNA = deoxyribonucleic acid, PKS = polyketide synthase, UV = Ultraviolet Radiation. 

 

Table 2 Mycological experiments under simulated space conditions. 

 
Fungi Space condition Exposure 

format 
Effects observed References 

Phylum Class Species 

Ascomycota Dothideomycetes 

Alternaria 

alternata 
Ionizing radiation 

(Gamma and 

electron beam) 

Spore 

suspensions 
Gamma radiation LD90 = 

2.409 kGy, Electron beam 

LD90 = 1.099 kGy. 

Blank & Corrigan (1995) 

Cryomyces 

antarcticus 

Microgravity, 

Radiation, simulated 

Mars conditions, 

Mars and lunar 

regoliths 

EXPOSE-E, 

EXPOSE-R2 
12 % survival to full outer 

space, including cold, ionizing 

and UV radiation up to 900 

kJ. Nucleic acids, melanin, 

and dicarboxylic acids 

stability after exposure. 

de Vera et al. (2019), 

Onofri et al. (2008), 

Pacelli et al. (2017c, 

2019), Cassaro et al. 

(2022b) 
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Table 2 Continued. 

 
Fungi Space condition Exposure 

format 

Effects observed References 

Phylum Class Species 

   Gamma rays, He-

ions, X-rays, UVB 

radiation 

Dried colonies 12% of survival at 56 kGy of 

gamma rays, survival up to 

1000 Gy of He ions, survival 

up to 0.3 Gy of X-rays, and 

survival up to 240 hours of 

UVB irradiation. Nucleic 

acids and melanin stability 

after gamma rays exposure. 

Pacelli et al. (2017a, b, c), 

Selbmann et al. (2011), 

Cassaro et al. (2022c) 

  Cosmic rays (He- 

and, Fe-ions), Mars 

artificial regoliths 

Dried colonies Survival up to 1 kGy, 

preservation of DNA and 

melanin – still detectable after 

exposure (biosignatures). 

Pacelli et al. (2020a), 

Aureli et al. (2020) 

  Cosmic rays  

(Fe-ions) 
Liquid culture Survival up to 2000 Gy. Pacelli et al. (2021b) 

  Simulated radiation, 

Simulated Mars 

conditions, Mars and 

lunar regoliths 

Dried colonies Good viability, higher under 

Mars conditions than in space 

conditions. DNA preservation 

only slightly affected by 

radiation. 

Pacelli et al. (2017c, 

2019), Cassaro et al. 

(2021b, 2022b), Gevi et 

al. (2022) 

  Martian relevant 

perchlorates 
Agar culture Good viability up to 220 mM 

of Na-,145 mM of Mg-, 200 

mM of Ca-, and 90 mM of K-

perchlorates 

Cassaro et al. (2022d) 

 Curvularia 

geniculata 
Ionizing radiation 

(Gamma and 

electron beam) 

Spore 

suspensions 
Gamma radiation LD90 = 

1.798 kGy, Electron beam 

LD90 = 1.193 kGy. 

Blank & Corrigan (1995) 

Eurotiomycetes 

Aspergillus 

carbonarius 
Microgravity 

(Clinostat, 20 rpm) 
Solid media No effect on cell or colony 

growth, but increased organic 

acid production. 

Jiang et al. (2019) 

Aspergillus 

echinulatus  

Ionizing radiation 

(Gamma and  

Spore 

suspensions 

Gamma radiation LD90 = 

0.319 kGy, Electron beam  

Blank & Corrigan (1995) 
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Table 2 Continued. 

 
Fungi Space condition Exposure 

format 

Effects observed References 

Phylum Class Species 

  (synonym: Eurotium 

echinulatum) 
electron beam)  LD90 = 0.241 kGy.  

Aspergillus fumigatus UVB Spore 

suspensions 

1.62 CPDs per 10 kb at a dose 

of 5400 J/m2. 

Nascimento et al. (2010) 

 Ionizing radiation 

(Gamma and 

electron beam) 

Spore 

suspensions 

Gamma radiation LD90 = 0.276 

kGy, Electron beam LD90 = 

0.198 kGy. 

Blank & Corrigan (1995) 

Mars, UVC 

(MSC) 
ISS isolate, 

dried spores 
Survived Mars-like conditions 

for 30 min. 20 % spore 

survival at 4000 J/m2. 

Blachowicz et al. (2019b) 

Aspergillus glaucus Ionizing radiation 

(Gamma and 

electron beam) 

Spore 

suspensions 
Gamma radiation LD90 = 0.250 

kGy, Electron beam LD90 = 

0.243 kGy. 

Blank & Corrigan (1995) 

Aspergillus nidulans UVB Spore 

suspensions 
0.04 CPDs per 10 kb at a dose 

of 900 J/m2. 
Nascimento et al. (2010) 

Aspergillus niger 

Microgravity 

(HARV) 
Liquid culture No changes in stress response. Sathishkumar et al. (2014) 

Microgravity Solid media No differences in morphology, 

growth, asexual development 

or antifungal susceptibility. 

Yamazaki et al. (2012) 

Microgravity 

(Clinostat, 60 

rpm) 

Solid Media General increase in colony 

area, spore production, and 

biofilm (vegetative mycelium) 

thickness 

Cortesão et al. (2022) 

Ionizing radiation 

(Gamma and 

electron beam) 

Spore 

suspensions 
Gamma radiation LD90 = 0.245 

kGy, Electron beam LD90 = 

0.199 kGy. 

Blank & Corrigan (1995) 

 UVB radiation Dried spores 24% survival up to 1.6 kJ/m2. Silverman et al. (1967) 
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Table 2 Continued. 

 
Fungi Space condition Exposure 

format 

Effects observed References 

Phylum Class Species 

   UVC, X-rays, 

Cosmic Rays: He- 

and Fe-ions 

Dried spores 

and spores 

suspensions 

UVC LD90 = 1038 J/m2, X-

ray LD90 = 360 Gy. Spores 

dried before irradiation were 

more susceptible to X-ray 

radiation. He-ion LD90 = 500 

Gy, Fe-ion LD90 = 100 Gy. 

Cortesão et al. (2021) 

 Mars (Trex box + 

Balloon flight) 

Dried Spores Survival of spore monolayer 

after 5-month desiccation 

under Mars simulated 

atmosphere, temperature 

fluctuation ([-51 °C, 21 °C]), 

and exposure to 1148 kJ m/2 

UVA-UVB radiation. 

Cortesão et al. (2021) 

Aspergillus 

ochraceus 
Ionizing radiation 

(Gamma and 

electron beam) 

Spore 

suspensions 
Gamma radiation LD90 = 

0.209 kGy, Electron beam 

LD90 = 0.198 kGy. 

Blank & Corrigan (1995) 

Aspergillus 

versicolor 
Ionizing radiation 

(Gamma and 

electron beam) 

Spore 

suspensions 
Gamma radiation LD90 = 

0.282 kGy, Electron beam 

LD90 = 0.234 kGy. 

Blank & Corrigan (1995) 

Knufia 

chersonesos 
Microgravity 

(HARV) 
Liquid culture No changes in morphology. 

Upregulation of enzymes 

involved in the synthesis of 

(DHN) melanin. 

Tesei et al. (2021) 

Penicillium 

aurantiogriseum 
Ionizing radiation 

(Gamma and 

electron beam) 

Spore 

suspensions 
Gamma radiation LD90 = 

0.236 kGy, Electron beam 

LD90 = 0.194 kGy. 

Blank & Corrigan (1995) 

Penicillium 

cyclopium 
Ionizing radiation 

(Gamma and 

electron beam) 

Spore 

suspensions 
Gamma radiation LD90 = 

0.397 kGy, Electron beam 

LD90 = 0.290 kGy. 

Blank & Corrigan (1995) 

Penicillium 

granulatum 

Ionizing radiation 

(Gamma and 

electron beam) 

Spore 

suspensions 

Gamma radiation LD90 = 

0.416 kGy, Electron beam 

LD90 = 0.341 kGy. 

Blank & Corrigan (1995) 
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Table 2 Continued. 

 
Fungi Space condition Exposure 

format 

Effects observed References 

Phylum Class Species 

  Penicillium 

roqueforti 

Ionizing radiation 

(Gamma and 

electron beam) 

Spore 

suspensions 

Gamma radiation LD90 = 

0.397 kGy, Electron beam 

LD90 = 0.290 kGy. 

Blank & Corrigan (1995) 

Penicillium rubens 

(formerly  

P. chrysogenum) 

Microgravity 

(HARV) 

Liquid culture Changes in cell wall; 

increased expression of Acyl-

coenzyme: isopenicillin N 

acyltransferase. 

Sathishkumar et al. 

(2016) 

Microgravity 

(HARV) 

Liquid culture The number of mitochondria 

increased. 

Sathishkumar et al. 

(2014) 

Penicillium 

verrucosum 

Ionizing radiation 

(Gamma and 

electron beam) 

Spore 

suspensions 

Gamma radiation LD90 = 

0.266 kGy, Electron beam 

LD90 = 0.208 kGy. 

Blank & Corrigan (1995) 

Penicillium 

viridicatum 
Ionizing radiation 

(Gamma and 

electron beam) 

Spore 

suspensions 
Gamma radiation LD90 = 

0.333 kGy, Electron beam 

LD90 = 0.265 kGy. 

Blank & Corrigan (1995) 

Saccharomycetes 

Candida albicans Microgravity 

(HARV) 
Liquid culture Random budding phenotype 

occurred. Cells showing 

random budding were often 

found in clusters composed of 

a variety of morphologic 

forms, including filamentous 

form. 

Altenburg et al. (2008) 

Debaryomyces 

hansenii 

Liquid perchlorate 

brines from Mars. 

Sodium perchlorate 

(2.4 M NaClO4) 

Liquid culture Presented the highest 

microbial perchlorate 

tolerance reported so far. 

Heinz et al. (2020) 

Saccharomyces 

cerevisiae 

Microgravity 

(HARV) 

Liquid culture Random and abnormal 

budding phenotype. Increased 

number of cells in clumps or 

aggregates. Increase in gene  

Purevdorj-Gage et al. 

(2006) 
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Table 2 Continued. 

 
Fungi Space condition Exposure 

format 

Effects observed References 

Phylum Class Species 

 

  

  expression of HWP1 and 

decrease of YWP1. 

 

Gamma radiation, 

freezing (-79°C) 

Desiccated cells Survival limit increased from 

10 kGy to 24 kGy after 

desiccation and freezing. 

Horne et al. (2022) 

Sordariomycetes 

Neurospora crassa X-rays 

Cosmic Rays 

Commercial 

radiation 

sources 

NHEJ-deficiency led to 

differences in survival 

between X-ray and heavy ions 

(Ar and Fe). 

Ma et al. (2018) 

Purpureocillium 

lilacinum 

Liquid perchlorate 

brines from Mars 

(1.1 M NaClO4) 

Liquid culture Has the second-highest 

microbial perchlorate 

tolerance reported so far. 

Heinz et al. (2020) 

Sordaria 

macrospora 

Microgravity 

(Clinostat, 4 rpm) 

Solid media Changes in crossover. Henkel & Hock (1991) 

Basidiomycota Agaricomycetes 

Coprinus cinereus Microgravity 

(Clinostat) 
Solid media Gravimorphogenesis 

observed, with longer stems 

and bending. 

Moore et al. (1996) 

Flammulina 

velutipes 
Hypergravity (1 and 

20G), 

Microgravity (1 and 

2 rpm) during D-2 

mission 

Solid media Gravimorphogenesis. 

Gravistimulation, differential 

accumulation of vesicles 

(vacuole enlargement) inside 

the transition zone hyphae at 

the lower side of horizontally 

oriented stipes. Fruiting 

bodies grow with different 

directions. 

Kern & Hock (1996), 

Moore et al. (1996) 

CPDs = cyclobutane pyrimidine dimers, DHN = 1,8-dihydroxynaphthalene, DNA = deoxyribonucleic acid, HARV = high aspect ratio vessel, HWP1 = 

hyphal wall protein 1 gene, ISS = International Space Station, LD90 = dose at which there is 90% spore inactivation, MSC = Mars simulation chamber, 

NHEJ = nonhomologous end-joining, rpm = revolutions per minute, UV = ultraviolet radiation, YWP1 = yeast wall protein 1 gene. 
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Table 3 European Space Agency (ESA) experimental work exposing Cryomyces antarcticus to low 

Earth orbit (LEO). 

 

The LIFE experiment 

Aimed to investigate the resistance of C. antarcticus to space and Martian simulated conditions in space after 1.5 years of 

ISS external exposure. During the experiment, dried fungal colonies, accommodated in wells (1.4 cm in diameter), were 

either exposed to space environment (vacuum from 10−7 to 10−4 Pa, fluctuations of temperature between -21.5 and +59.6 °C, 

cosmic ionising radiation up to 190 mGy, and solar extra-terrestrial electromagnetic radiation up to 6.34×108Jm−2) or 

shielded from insolation. The sun-exposed LIFE samples were exposed to 1,879 eSCh (estimated Solar Constant hours) 

(Rabbow et al. 2012). The samples were also kept in simulated Mars atmosphere (1.6% Ar, 0.15% O2, 2.7% N2, 370 ppm 

H2O, in CO2), pressure (103 Pa), and UV radiation, cutting-off the spectrum of solar extra-terrestrial electromagnetic 

radiation at a wavelength of λ = 200 nm (using quartz filters). Some samples were screened with neutral density filters, with 

fluencies of 9.19×105Jm−2, below a 0.1% transmission, to reduce insolation irradiance by three orders of magnitude. In 

addition, dark flight samples were allocated beneath the insulated ones. After 1.5 years in space, fungal cells were tested for: 

survivability, DNA stability, and cell-membranes and cellular ultrastructure integrity. Cryomyces antarcticus lost colony-

forming ability after exposure to full insolation (λ >110 nm, 100% insulated samples), but the percentage of culturable cells 

was still 12.5% (±4.11) when 0.1% insulated (Table 1, Onofri et al. 2012). Under Mars conditions simulated in space (100% 

solar electromagnetic radiation at λ >200 nm), the viability of the dehydrated cells was 0.8% (±0.18) (Table 1, Onofri et al. 

2015). 

 

                                                            ← Expose-E facility (courtesy of ESA). 

The BIOMEX experiment 

Aimed at investigating the survival of selected extremophiles as well as the stability/degradation of their biological 

components (pigments, cell wall components, etc.) (de Vera et al. 2012, 2019), to be proposed as biomarkers for searching 

for life on Mars. In this frame, the black fungus C. antarcticus was grown on lunar regolith analogue like anorthosite, and 

on two Mars regolith analogue mixtures, Phyllosilicatic Mars Regolith Simulant (P-MRS, igneous rocks) and Sulfatic Mars 

Regolith Simulant (S-MRS, analogue for a more acidic environment with sulphate deposits), to study its resistance in space. 

After 531 days in space, samples were investigated on Earth to analyse fungal growth, resistance, and the resilience of its 

biomolecules, to be accounted for as biomarkers (Pacelli et al. 2021a, Baqué et al. 2022, Cassaro et al. 2022a). Survival and 

metabolic activity recovery were reported for C. antarcticus colonies regardless of the substratum, with no detectable DNA 

or cell-membrane damages (Table 1, Onofri et al. 2019). The percentage of culturable cells was 78% and 40% for samples 

grown on P-MRS and S-MRS, respectively (Onofri et al. 2019). Overall, these findings support the hypothesis that 

desiccation-tolerant life forms could survive for long periods of time in protected niches on Mars. The stability of fungal 

biomolecules, namely melanin, in space and under simulated Martian conditions was further investigated using Raman 

spectroscopy, a technique planned for the upcoming ESA ExoMars mission (Vago et al. 2017). Melanin pigment present in 

the fungal cell-walls was identified as stable and detectable, even after space exposure (Table 1, Pacelli et al. 2021a, 

Cassaro et al. 2022a, b). 

EXPOSE-R2 facility (courtesy of ESA). →  
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Preliminary ground-based experiments evaluating C. antarcticus resistance under different 

space stressors were performed for the LIFE project (Table 3). This fungus was exposed to two sets 

of Experiment Verification Tests (EVT), in order to assess its responses to: i) simulated space 

conditions: vacuum, temperature fluctuations (-20 / +20 °C), monochromatic UVC radiation, and 

high polychromatic UV radiation; and, ii) simulated CO2 Martian atmosphere and pressure, 

simulated space vacuum combined with polychromatic UV radiation, and simulated CO2 Martian 

atmosphere combined with polychromatic UV radiation, respectively (Onofri et al. 2008). 

Cryomyces antarcticus was the most negatively affected when compared to other black fungi 

species, despite having a good growth ability after exposure to simulated space and Mars conditions 

(Onofri et al. 2008). Samples were also subjected to temperature cycles at different time intervals, 

and a surprising high viability of growing colonies was recorded after exposure to 80 and 90 °C for 

60 minutes (Onofri et al. 2008; Table 2). 

In the frame of the BIOMEX project (Table 3), C. antarcticus was exposed to two series of 

ground-based experiments, including the EVTs and the Science Verification Tests (SVTs, Rabbow 

et al. 2015) carried out before the space exposure. Particularly, EVTs simulated individual space 

conditions, while SVTs were performed within the same exposure platform used aboard the ISS 

(EXPOSE-R2), and simultaneously simulated all the environmental stresses expected in the LEO 

exposure. In these experiments, de-hydrated colonies of C. antarcticus were exposed to simulated 

Martian and space conditions after being grown on sandstone, where it naturally occurs, as well as 

on Martian and lunar regolith analogues (de Vera et al. 2012, 2019; Table 2). During the EVTs,  

C. antarcticus colonies were exposed to increasing doses of UV irradiation, simulating the whole 

Solar UV spectrum expected in LEO for the duration of the mission (up to 16 months). Firstly, 

samples were analysed through culture methods in order to evaluate their survival in terms of 

colony forming ability, and a high count was detected even after vacuum or Martian atmosphere 

coupled with irradiation. These results were further confirmed by the investigation of cellular 

membrane integrity (PMA- quantitative polymerase chain reaction – qPCR assay) and 

ultrastructural damages (Transmission electron microscopy – TEM). While a high percentage of 

survivors was detected for C. antarcticus colonies grown on Martian artificial regolith and exposed 

to SVTs treatments. 

Cryomyces antarcticus had already shown capacity to retain colony forming ability and DNA 

integrity after ultraviolet B (UVB) exposure at doses lethal to Saccharomyces pastorianus (Onofri 

et al. 2007, Selbmann et al. 2011; Table 2). As part of the STARLIFE irradiation campaign 

(Moeller et al. 2017), which focused on the exposure of selected extremophilic organisms to 

different types of ionising radiation (x-rays, gamma-rays, heavy ions), representing part of the 

galactic cosmic radiation spectrum, C. antarcticus was exposed to gamma rays (up to 117.07 kGy), 

alpha particles (helium nuclei, up to 1000 Gy), and heavy ions (iron-ions, up to 1000 Gy) (Table 2). 

The aim of these studies was to evaluate the resistance of dehydrated colonies to photon and ion 

radiations that differ in their linear energy transfer (LET) values. Surprisingly, C. antarcticus 

demonstrated remarkable DNA integrity after exposure at 117 kGy of gamma radiation, which 

corresponds to 1.5 million years’ exposure on the Martian surface and 13 million years at 2-meters 

beneath the surface (Hassler et al. 2014). Results reported in Pacelli et al. (2017b) clearly indicated 

a very high resistance to gamma radiation, with a 12% survival rate recorded even at the dose of 

55.81 kGy (Table 2). Also, a good stability of nucleic acids and melanin pigments was reported up 

to the dose of 117.07 kGy (Cassaro et al. 2022c). 

The biological effect of increasing helium-ions radiation (up to 1000 Gy) was assessed by 

different molecular tests, demonstrating the maintenance of high survival and metabolic activity 

even after the highest dose (Pacelli et al. 2017d). Similar results were reported for fungal colonies 

mixed with a phyllosilicatic Mars regolith simulant (up to 1000 Gy, 6% of survivors) (Pacelli et al. 

2020a). 

Given the high vitality reported with no evidence of DNA damage, the focus was directed to 

melanin pigments as radiation photoprotection, by comparing the resistance of melanized and non-

melanized C. antarcticus strains. After demelanization, fungal colonies were treated with densely 
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ionising deuterons (2H, up to 1500 Gy) and sparsely ionising X-rays (up to 300 Gy) in 

physiological conditions, and the effects were measured using cell viability colorimetric assays 

(XTT, and MTT) and ATP levels. Both melanized and non-melanized cells survived acute ionising 

radiation doses, with melanized cells being more resistant (Pacelli et al. 2017a, b; Table 2). It was 

recently discovered that C. antarcticus can produce both 1,8-dihydroxynaphthalene (DHN) and L 

3-4 dihydroxyphenylalanine (L-DOPA) melanins (Pacelli et al. 2020b). In addition, the resistance 

of the black fungus to heavy ions was recently reported (Aureli et al. 2020, Pacelli et al. 2020a) 

(Table 2). Cryomyces antarcticus colonies were able to reactivate and grow after 1000 Gy of Fe-

ions exposure, alone or in combination with two Martian artificial regoliths (phyllosilicatic and 

sulfatic, Aureli et al. 2020). According to these results, C. antarcticus showed a stunning ability to 

survive up to 1000 Gy of Fe-ions, when exposed in metabolically active conditions (Pacelli et al. 

2021b) (Table 2). 

Since radiation is not the only stressor encountered in space or on the surfaces of 

extraterrestrial planets, the fungus was also tested for its resistance against perchlorate species as a 

part of the Italian “Life in Space” project (Onofri et al. 2020). The project was funded by the Italian 

Space Agency (ASI), in the wake of the proposal for the development of a network of institutions 

and laboratories conceived to implement Italian participation in space astrobiology experiments. 

One of the project’s primary goals was to investigate the origin and evolution of life in the 

universe, spanning from prebiotic chemistry to astrobiology and astrophysics (Onofri et al. 2020). 

Perchlorate ions are known to damage the main functions of terrestrial living organisms, they 

break off a number of metabolic processes, and also act as oxidising agents causing cell membrane 

damage (Urbansky 1998). Although these compounds are rarely seen on Earth, high concentrations 

have been detected in several locations on Mars. The fungus demonstrated the ability to withstand 

up to 220 mM of Na-, 200 mM of Ca-, 145 mM of Mg- and 90 mM of K-perchlorates, and 0.4-0.6 

wt% of Mg(ClO4)2 and Ca(ClO4)2, concentrations similar to those found on Mars by the Phoenix 

lander (Cassaro et al. 2022b,d; Table 2). Also, a considerable metabolic activity was detected even 

at higher perchlorate concentrations, while ultrastructural investigations reported scarcely 

distinguishable internal structures (Cassaro et al. 2022d). This study provides, for the first time, 

insights about the resistance of the black fungus C. antarcticus to different perchlorate species that 

might have implications on habitability in other planetary bodies. 

Furthermore, during the BIOMEX project mentioned in Table 3, the stability of fungal 

biomolecules was investigated using techniques similar to those included in the Perseverance and 

Rosalind Franklin rovers (Raman and Fourier transform infrared – FTIR spectroscopies and Gas 

Chromatography-Mass Spectrometry – GCMS). In addition, PCR and qPCR techniques were 

applied to detect any damages in nucleic acids, suggesting their potential use as life-detection 

instruments in new-generation rovers. Indeed, nucleic acids may be considered a potential 

biomarker of life, despite their high sensitivity to degradation, as good amplification was recorded 

even at the high dose of 5.5 × 105 kJ/m2 of EVT treatments (Pacelli et al. 2020a; Table 2). 

Compared to EVT treatments, SVT samples showed a decrease in copy numbers amplification, 

even if no noticeable damages were reported (Cassaro et al. 2021b). Since one of the main goals of 

the ongoing and future space exploration missions is the detection of extant or recently extinct signs 

of life, the studies concerning the stability of terrestrial biomolecules after exposure to space 

stressors are critical. 

 

2.3.4 Relevance of melanins for space exposure 

Melanins are a class of multifunctional and acid-resistant pigments (or biochromes) that are 

widely known for their protective properties (Malo et al. 2019). In the fungal kingdom, we can 

observe different types of melanin, as well as numerous examples of how these biochromes protect 

fungal organisms against a plethora of abiotic and biotic stressors (Cordero & Casadevall 2017). 

From an abiotic perspective, they are associated with protection against different types of ionising 

radiation (Wang & Casadevall 1994a, Robertson et al. 2012, Shuryak et al. 2015, Pacelli et al. 

2017a, c, Cortesão et al. 2020a), oxidative stress (Jacobson & Tinnell 1993, Wang & Casadevall 
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1994b, Jahn et al. 2000), heat/cold stress (Rehnstrom & Free 1996, Rosas & Casadevall 1997, 

Paolo et al. 2006), osmotic stress (Kogej et al. 2007, Fernandez & Koide 2013, Kejžar et al. 2013), 

toxic metals (García-Rivera & Casadevall 2001) and antimicrobial organic compounds (Wang & 

Casadevall 1996, van Duin et al. 2002, Nosanchuk et al. 2004). In terms of biotic stressors, fungal 

pathogens of animals and plants are known to use melanin to aid during infection and resist host-

immune defence mechanisms, making melanin an important virulence factor and antifungal drug 

target (Nimrichter et al. 2005, Černoša et al. 2021). 

Beyond protection, fungal melanin serves as an energy-harvesting biological pigment, 

absorbing electromagnetic radiation with conversion into thermal energy (Cordero et al. 2018) 

and/or chemical energy associated with enhanced fungal growth and metabolic activity (Dadachova 

et al. 2007, Robertson et al. 2012). Considering all the examples in which melanin protects against 

different stressors, it makes sense that melanin would play a role in the ability of fungal organisms 

to survive space environmental conditions. 

A direct link between melanin and protection against spaceflight conditions was recently 

demonstrated. This was achieved by comparing the viability of melanized and non-melanized 

clones of Cryptococcus neoformans cells after a roundtrip to the ISS and spending 29 days inside 

the Japanese Experimental Module (Cordero et al. 2022). Following the 29 days, colony-forming 

unit (CFU) analysis showed that, while Earth-bound control samples exhibited similar viability, 

ISS-bound melanized cells exhibited 50% higher viability than non-melanized clones (Cordero et 

al. 2022). The higher viability of melanized cells following spaceflight is consistent with the known 

protective properties of melanin. In addition to protection, melanin may also confer a growth 

advantage under spaceflight conditions related to its energy-harvesting properties (Dadachova et al. 

2007, Cordero et al. 2018). 

Since spaceflight conditions comprise a combination of stressors such as radiation, low 

gravity, temperature shocks, and hypervelocity, identifying which specific properties of melanin are 

important for viability in space, as well as specific mechanisms of melanin-mediated survival, 

would require the analysis of such spaceflight stressors, individually, and in combinations, using 

real and/or simulated conditions. The conclusion that melanin can protect fungi from spaceflight 

effects suggests that biological melanization and/or melanin-containing products could eventually 

be exploited as a strategy to protect and increase the lifespan of biological assets in space (Section 

2.4). 

It is also worth noting that the detectability of melanin pigments, even in the presence of a 

multitude of biomolecules and their discernibility from amorphous carbon spectra, has been 

demonstrated (Cassaro et al. 2021b, Pacelli et al. 2021a; Table 2). This body of evidence 

encourages their inclusion in the list of biomarkers used in the search for Earth-like life elsewhere 

in our solar system. This is further emphasised by the general importance of these pigments in 

fungal stress tolerance under space-relevant conditions and in the model organism C. antarcticus 

(Section 2.3.3). 

 

2.4 Fungal threats for space exploration 

Fungi can constitute formidable threats to space exploration. The isolation of opportunistic 

fungal human pathogens and mycotoxin-producing species from space habitats has been 

extensively documented (Novikova 2004, Checinska Sielaff et al. 2016, De Middeleer et al. 2019). 

Numerous studies have demonstrated spaceflight associated changes in both the astronauts’ 

immune system (i.e., immune dysregulation) (Cervantes & Hong 2015, ElGindi et al. 2021) and 

microbial physiology (e.g., enhanced virulence and biofilm formation) (Bijlani et al. 2021, 

Urbaniak et al. 2021). Monitoring of the mycobiome is crucial to maintain sanitary and 

microbiological optimum condition; however, it is also necessary to prevent the process of bio-

destruction of spacecraft materials (Rcheulishvili et al. 2020). Corrosion and degradation of 

different materials depend on the ability of several fungi to use a great variety of substrates as a 

source of nutrients for growth, by enzymatic hydrolysis and hyphal penetration (Sanchez-Silva & 

Rosowsky 2008). In addition to the potential damage to space equipment, the growth of fungal 
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communities may cause genetic adaptations to stressors encountered in space conditions, which 

have the potential to lead to the emergence of virulence traits and increase risks to the crew’s health 

(Wilson et al. 2007, Rosenzweig et al. 2010, Crabbé et al. 2013, Cortesão et al. 2020b). 

 

2.4.1 Habitat contamination and material biodegradation 

Microorganisms-mediated biodeterioration is observed in various settings on Earth. 

Mechanical and chemical damage resulting from fungal physiological features and metabolism 

have been largely reported for diverse types of materials, including rock, plastic, metal, fabric, and 

glass, among others (Gutarowska 2014, Borrego et al. 2018, Schmidt et al. 2020). These 

phenomena have severe economic impact in several industries, along with jeopardising the cultural 

heritage, as they challenge the physical integrity of substrates (Sterflinger & Pinzari 2012, Kavkler 

et al. 2022, Ul-Abdin et al. 2022) through processes known as bioweathering, erosion, decay, and 

decomposition (Gadd 2007). 

Biodegradation of organic substances is a natural process that acts on leaves, grass, and food 

scraps, and is correlated with fungal ability to secrete extracellular enzymes with hydrolytic 

properties (DSouza et al. 2021). Physical and chemical similarities of some natural polymers (e.g., 

lignin, starch, cellulose, and hemicelluloses) with synthetic polymers, enable fungi to breakdown 

artificial products such as plastic, and use them as carbon and energy sources (Kumar et al. 2013, 

Srikanth et al. 2022). Acidic metabolic by-products of fungal metabolism can, on the other hand, 

create an accelerated environment for corrosion, leading to metal dissolution and loss of structural 

integrity (Rcheulishvili et al. 2020, Okorie & Chukwudi 2021). Fungal-mediated corrosion has 

been documented in mixed biofilm formation in both water environments and humid atmospheres 

(Coetser & Cloete 2005, Kauffmann-Lacroix et al. 2016, Babič & Gunde-Cimerman 2021). Types 

of microbiologically influenced corrosion include biofouling – the accumulation of microorganisms 

and microbial products on natural and man-made surfaces – which represents a major problem for 

the industrial, medical, and marine fields (Bixler & Bhushan 2012). The fungal-led biofouling is 

characteristic of indoor environments, such as spacecraft, aircraft, hospitals, and industrial systems 

(Coetser & Cloete 2005, McNamara et al. 2005, Kokilaramani et al. 2021). Induced corrosion 

deriving from the biofilm build-up and secretion of EPS can lead to material degradation, 

mechanical blockages, and product contamination, issues often faced in industrial settings (e.g., 

water treatment systems and food/beverage industries) (Coetser & Cloete 2005, Luo et al. 2017, 

Dobretsov et al. 2021, Kokilaramani et al. 2021). Biofouling-dependent structural integrity 

reduction of medical devices and implants can instead cause malfunctions, implant rejection, and 

the spread of infectious diseases (LoVetri et al. 2010, Bixler & Bhushan 2012). Also due to 

microbial contaminants in aeronautical aluminium alloys and aircraft fuel tanks (e.g., A. niger), the 

aerospace industry has been facing increased corrosion, fuel filter clogging, and fuel deterioration 

for many years (McNamara et al. 2005, Jirón-Lazos et al. 2018, Hu et al. 2020). 

Biodeterioration is also a major issue in space, linked to the rich fungal communities that are 

found in spacecrafts, space stations, and other structures and materials in space missions. This 

problem proved to be particularly acute in the case of the orbital station Mir, where a unique 

microbiocenosis remained viable during the space station’s 15-year existence, resulting in visible 

fungal growth and biological damage to structural materials (e.g., cable insulation, window seals, 

space suits), leading to cases of malfunctioning and even breakage of certain units, and thus 

endangering the safety and reliability features of space equipment (Novikova 2004, Blachowicz et 

al. 2017, Mohan et al. 2017). 

Although the diversity of fungal species isolated from spacecraft and space stations appears 

not to be significantly different from the strains isolated on the ground (Makimura et al. 2001, 

Satoh et al. 2016, Blachowicz et al. 2018, Satoh et al. 2021), discrepancies have emerged between 

spaceflight species and their ground counterparts, especially concerning biodegradation ability and 

virulence (Satoh et al. 2021). In terms of colonisation and biodeterioration activity, for instance, 

several of the fungal species isolated on Mir were more aggressive against structural and decorative 

materials than reference isolates of the same species (Novikova 2004, Gutarowska 2014). This 
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resulted in an overrun of “dangerously aggressive”, radiation resistant, fast growing fungi and 

bacteria, which proved to be extremely hard to eradicate due to their high resistance to common 

antimicrobial agents (Novikova et al. 2006). 

The damaging activity of Mir fungal isolates (e.g., Penicillium spp., Aspergillus spp., 

Cladosporium spp., Aerobasidium spp.) was visible in situ, but also confirmed by ground-based 

studies, testing the deterioration of thermoplastic polymers (polyethylene terephthalate, PET) and 

metal corrosion (aluminium-magnesium alloys) (Alekhova et al. 2005). Organisms known to 

colonise and attack a large variety of polymeric and metallic surfaces have also been detected in 

samples originating from the ISS, where monitoring of biological contamination is regularly carried 

out in order to avoid microbiological problems (Novikova et al. 2006). A number of studies 

indicated that Aspergillus, Cladosporium, Fusarium and Penicillium are predominant fungal genera 

on both Mir and the ISS and possess an acid-producing capability (Rcheulishvili et al. 2020) that 

can contribute to the potential corrosion and degradation of stainless steel and other materials 

associated with electronic equipment and life support systems (Checinska et al. 2015, Kip & van 

Veen 2015, Amalfitano et al. 2020). Additionally, degradation of high heat-resistance plastic 

material used for insulation (i.e., polyimide) was reported for the ISS isolates A. versicolor, 

Cladosporium cladosporioides, and Chaetomium sp. (Gu 2007). Growth of Cladosporium spp. was 

also observed on synthetic polymer materials (Nomex and cable labelling material; Reidt et al. 

2014) in the Russian segment of the ISS and on spacesuits from the Apollo mission (Breuker et al. 

2003), and their ability to degrade the same polymers was also demonstrated. Finally, the fungal 

ability to degrade military assets such as paints and fuel storage containers has also been reported 

(Little et al. 1997, Little & Ray 2001). 

Maintaining microbial contamination in the space habitat within regulated levels is 

paramount to reducing concerns about spacecraft integrity and function (Liu 2017). Albeit the 

polymeric structural and insulation materials used in spacecraft are chemically synthesised with 

exceptionally high strength and resistance against both chemical and biological degradation 

processes (Gu 2007), the spacecraft-mycobiome biodeterioration potential should not be 

underestimated. 

Fungal growth on indoor vehicle surfaces and equipment is supported by organic and 

inorganic components required for their manufacturing, such as additives and plasticizers from 

polymeric material and additional nutrients (e.g., dust) (Gu 2007). As mentioned earlier, condensate 

atmospheric moisture, accumulated in the habitable pressurised cabins, is another crucial aspect of 

microbial colonisation (Novikova 2004). Alongside decreasing the efficiency and lifetime of the 

spacecraft equipment, microbial attack of polymeric material can also be associated with the release 

of toxic VOCs (e.g., alcohols, esters, hydrocarbons, terpenes, ketones, compounds containing 

sulphur), as well as polymer particles, which, when accumulated, can impair the sanitary and 

hygienic properties of surfaces (Wang et al. 2021). It follows that microbial activity has a profound 

impact on the success of space missions, in terms of both the structural stability of the spacecraft 

and the well-being of the crew (Kim et al. 2013). 

To reduce the risks associated with microbial contamination of the spacecraft habitat, the 

deposition of antimicrobial coatings on indoor spacecraft surfaces, combined with strict cleaning 

protocols and continuous monitoring, is implemented as a prevention strategy (Paton et al. 2020, 

Wang et al. 2021). Similarly, protective organic coatings have been used to slow the effects of 

corrosion by stabilising metal surfaces (Rcheulishvili et al. 2020). Despite the implementation of 

these techniques, the dynamic and persistent spacecraft microbiomes harbour a biochemical 

potential to tolerate cleaning procedures and survive the oligotrophic spacecraft environment 

(Mogul et al. 2018), resulting in serious microbial biodeterioration problems for both crewed and 

uncrewed space missions. Hence, understanding how microbes adapt to utilise different resources 

in a controlled built environment is essential to implementing prevention strategies. Such strategies 

encompass the design and optimization of spacecraft materials with antimicrobial properties that 

aid in the prevention of unwanted microbial growth, which will be essential for long-term crewed 

missions (Tesei et al. 2022). 
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2.4.2 Fungal threats for astronaut health 

Space microbiology studies indicate that the environmental conditions on board spacecraft 

and space stations allow the growth of potentially pathogenic fungi, which could result in 

contamination with allergenic or toxic secondary metabolites (such as mycotoxins) and cause 

opportunistic infections, allergies, and intoxication in space, as on Earth (Yamazaki et al. 2012, 

Satoh et al. 2016, De Middeleer et al. 2019). Opportunistic pathogens encountered on spacecraft 

and space stations encompass several moulds of the genus Aspergillus (e.g., A. fumigatus, A. niger, 

and A. flavus), while other species identified as potential producers of mycotoxins and allergens 

include, along with Aspergillus spp., Alternaria spp., Fusarium spp., Cladosporium spp., and 

Penicillium spp. (Alekhova et al. 2005, Novikova et al. 2006, Gu 2007, Vesper et al. 2008, Satoh et 

al. 2011, Checinska Sielaff et al. 2019). The opportunistic pathogenic yeasts and main causative 

agent of mucosal disease, Candida albicans (Bongomin et al. 2017) and R. mucilaginosa, are also 

commonly detected among the predominant spacecraft species (Geltner et al. 2013, Wang et al. 

2020). 

Infections due to Aspergillus spp. cause significant morbidity and mortality (Person et al. 

2010). The illnesses resulting from aspergillosis usually affect the respiratory system, but their 

signs and severity vary greatly, ranging from an allergic reaction to mild and serious lung disease. 

Invasive aspergillosis can additionally occur if the infection spreads to blood vessels and beyond, as 

observed in patients with severely compromised immune systems (Gletsou et al. 2018). The 

majority of the infections (~90%) are attributed to A. fumigatus, the most significant airborne 

opportunistic pathogenic mould on Earth (Bongomin et al. 2017, Knox et al. 2016), followed by  

A. flavus and A. niger, which, although less pathogenic to humans than other Aspergillus spp., have 

been associated with ear infections and cases of invasive infection (e.g., pulmonary aspergillosis, 

tracheobronchitis) in immunocompromised patients (Schuster et al. 2002, Person et al. 2010, 

Atchade et al. 2017). 

Of no less importance is the production, by these and other species, of contaminants that are 

extremely harmful to the health of humans and animals. Mycotoxins, for instance, can cause acute 

and chronic toxic effects that range from nausea, diarrhoea, gastrointestinal problems, 

nephropathies, hepatitis, and hyperestrogenism to immunotoxicity and carcinogenicity (Klintworth 

et al. 1999, Bennett & Klich 2003, De Middeleer et al. 2019). Species found on ISS surfaces and/or 

on dust, such as A. flavus, A. ochraceus, A. versicolor, and Penicillium expansum, are known to 

produce carcinogenic mycotoxins – aflatoxins (AFs) and foodborne mycotoxins – OTA (also 

produced by A. niger), sterigmatocystin, and patulin (Novikova et al. 2006). ISS sampling also 

revealed potential producers of the nephrotoxin citrinin (Penicillium corylophilum) and rubratoxin 

B (Penicillium purpurogenum), the immunosuppressive compound mycophenolic acid (Penicillium 

brevicompactum) (Ndagijimana et al. 2008), and several genotoxic and mutagenic mycotoxins like 

alternariol and tenuazonic acid (Alternaria alternata) (Ostry 2008, Vesper et al. 2008). 

The actual impact of opportunistic pathogens and mycotoxins on astronauts’ health depends 

on many factors, including the susceptibility and health state of the crew members and the type and 

extent of the contamination (e.g., skin, airways, or bloodstream) (De Middeleer et al. 2019, Simões 

& Antunes 2021). Additionally, the growth and metabolite production of fungi on humans and 

spacecraft materials and equipment is regulated by factors like specific atmospheric fluid 

condensates and contaminants of chemical or human origin (e.g., metabolic products) (Klintworth 

et al. 1999). Due to moisture accumulation and environmental protection, material types with 

higher hygroscopicity and porosity tend to be associated with higher microbial diversity, including 

microbes having higher abundance of antimicrobial and virulence-associated genes (Gadd 2017, 

Mohan et al. 2020, Tesei et al. 2022). Another factor influencing human exposure to potentially 

dangerous species is microbial transfer, among crew members and between the astronauts and the 

spacecraft environment – where humans not only help build the spacecraft microbiome, but also 

uptake it as their own (Danko et al. 2020, Lee et al. 2021). This and the periodic exchange of crew 

members can contribute to qualitative and quantitative changes in the mycobiome composition, 

with fungal diversity increasing or decreasing over time (Sugita et al. 2016, Checinska Sielaff et al. 
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2019). Other potential contamination routes are regenerative life-support processes providing water 

– given that fungal biofilms have been found in tap water in private homes, hospitals, and industrial 

premises (Döğen et al. 2013, Babič et al. 2016, 2017) – and food, during long-term space missions 

(Walker & Granjou 2017). 

The reported capacity of fungi to grow and adapt to stress conditions, combined with the 

immune dysregulation observed in humans during spaceflight, have therefore the potential to pose 

direct and serious threats to the health of the astronauts (Vesper et al. 2008, Abad et al. 2010, 

Simões & Antunes 2021). Even more so, given the effects exerted by the space stressors, 

microgravity and ionising radiation in particular, on gene expression, mutation rate, epigenetics, 

metabolite production, virulence factors, etc., that could further increase fungal virulence and 

antifungal resistance of opportunistic pathogens, infections and diseases may become more likely 

and possibly harder to treat (Nickerson et al. 2003, Nickerson et al. 2004, Dadachova & Casadevall 

2008, Liu 2017, Urbaniak et al. 2019). 

Alteration of fungal properties and characteristics which could contribute to increased 

survival and pathogenicity, have been observed following exposure to both real and ground-

simulated spaceflight conditions (Prasad et al. 2021). While a number of studies pointed out little to 

no phenotypic and genotypic changes between causative agents of allergy and opportunistic 

infections and strains of the same species kept under Earth gravity (Yamazaki et al. 2012, 

Sathishkumar et al. 2014, Satoh et al. 2016) – e.g., Sathishkumar et al. (2014) observed no clear 

differences in morphology, growth, or asexual reproduction, nor significant stress influence on 

germination and cell wall integrity – others revealed interesting changed features, e.g., Kennedy et 

al. (2002) and Mahnert et al. (2019). For example, an ISS A. fumigatus isolate proved to be 

significantly more lethal than Earth-based clinical isolates when causing aspergillosis in neutrophil-

deficient zebrafish (Knox et al. 2016). Increased resistance to the antifungal agent amphotericin B 

(AmB) was observed in spaceflight-cultured C. albicans, compared to ground controls (Nielsen et 

al. 2021), along with increased proliferation rate, biofilm formation, antioxidant capacity, 

cytotoxicity, and filamentous morphology (Crabbé et al. 2013, Sathishkumar et al. 2016). Whole-

genome sequencing of another ISS isolate, A. niger, revealed the introduction of non-synonymous 

point mutations in specific regions of its genome (i.e., chromosomes VIII and XII) in response to 

space conditions, suggesting that only selected regions of the genome undergo positive selection to 

confer advantage while adapting to the space environment (Blachowicz et al. 2022b). Proteomics 

and metabolomics profiling of the same strain additionally showed an enhanced production of 

pyranonigrin A, a metabolite with antioxidant and UV-protective properties, as well as a higher 

abundance of enzymes involved in the synthesis of 1,8-dihydroxynaphthalene (DHN)-melanin 

(Romsdahl et al. 2020). 

Pigmentation and melanization are found in several microorganisms living on space stations 

(Dadachova & Casadevall 2011). For example, the melanin layer and polysaccharide capsule 

increased significantly in the mycotoxin producer P. expansum, following a seven-month exposure 

to outer space (Dadachova & Casadevall 2008). This is consistent with the increased melanin 

production in fungi isolated from high-radiation environments (Singaravelan et al. 2008, Gessler et 

al. 2014, Shunk et al. 2022). Another study documented the unaltered viability of A. niger conidia, 

which are darkly pigmented due to their high melanin content, following up to five months of 

spaceflight onboard the ISS (Gomoiu et al. 2016). Fungal melanins are radioprotectors that absorb 

space radiation, protecting from both DNA and cell damage (Pacelli et al. 2017b, Selbmann et al. 

2018). However, they are also potent virulence factors in both animal- (Wang et al. 1995, 

Heinekamp et al. 2012, Cordero & Casadevall 2017) and plant-pathogenic species (Steiner & Oerke 

2007). DHN-melanin was found to protect A. fumigatus clinical strains from UVC radiation, and 

when using a zebrafish model for invasive aspergillosis, the pigment was confirmed to be a 

virulence factor also in an A. fumigatus ISS-isolated strain (Blachowicz et al. 2020). These authors 

additionally detected UVC protective properties of the A. fumigatus spore metabolite 

fumiquinazoline. Similarly, higher levels of the pigment anthraquinone were reported in 

Aspergillus nidulans, also a causative agent of aspergillosis (Corrêa-Almeida et al. 2022), flown for 
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four to seven days aboard the ISS (Romsdahl et al. 2019), whose role may be to shelter the cells 

from both oxidative stress and radiation. 

Despite strict monitoring of the ISS and its astronauts to prevent risks from pathogenic 

infection and allergies, crew members still experience medical events of varying severity during 

spaceflight missions, such as conjunctivitis, acute upper respiratory tract infections, cold sores, skin 

infections, etc. (Institute of Medicine 2001, Crucian et al. 2016, Tesei et al. 2022). Therefore, 

continuous evaluation of the impact of these fungi on the ISS is essential to prevent the astronauts’ 

health from being jeopardised, especially during long-duration missions. It is essential to monitor 

not only fungi but also mycotoxin levels on board spacecraft as well as to define remediation 

strategies (De Middeleer et al. 2019). Indeed, although the presence of fungi does not necessarily 

mean mycotoxins are being produced, mycotoxins can still be present even when, over time, fungi 

are no longer detected (De Middeleer et al. 2019). Microbial interactions can also influence 

mycotoxin production. Studies of fungal co-infection in maize showed that the co-presence of 

Fusarium spp. and Aspergillus spp. leads to enhanced production of the carcinogenic aflatoxin B1 

(AFB1) by A. flavus, possibly due to a stress response caused by fungal competition (Camardo 

Leggieri et al. 2019, Giorni et al. 2019). Curiously, recent results of microbial tracking on the ISS 

indicate that Aspergillus spp. often co-occur with Fusarium spp. (Urbaniak et al. 2022). Given that 

A. flavus is commonly found in foods like peanuts, corn, and cereal, and because the ISS is a 

stressful environment for microbes, which could increase mycotoxins’ production, microbial 

monitoring of food sources destined for space is also necessary (Urbaniak et al. 2022). Other 

preventive strategies may include the application of spacecraft antimicrobial surfaces and coatings 

(e.g., nanoparticle-based approaches; Gupta et al. 2019) to counteract biofilm formation and, as we 

have mentioned, prevent changes in microbial physiology that could be detrimental to both 

astronaut health and spacecraft integrity (Wang et al. 2021). Efforts towards the design of 

spacecraft materials to inhibit pathogenic growth would benefit from preventing infection rather 

than relying on treatments after infection, given the limited medical resources available onboard 

spacecrafts (Tesei et al. 2022). 

While current fungal loads in spacecraft are not worthy of raising alarm, continuous 

monitoring will be critical to guaranteeing the success of future missions, especially those that 

actively utilise fungi in space (De Middeleer et al. 2019). 

 

2.5 Fungal opportunities and applications for space exploration 

We have been using fungal processes and products since the primordial days of our 

civilization, but innovations keep popping up in all sorts of fields and areas with multidisciplinary 

applications. Mycological research has been witnessing a massive development, and new fungal 

applications and technologies have been surfacing in our daily lives, where the use of fungal 

products is becoming increasingly common (Hyde et al. 2019, Meyer et al. 2020, Füting et al. 2021, 

Mapook et al. 2022). 

Thinking beyond, applications of fungal biotechnology on Earth can be reconceptualised as 

pioneering tools for space exploration. As hardy forefathers of life on Earth, fungi can pave the way 

for beginning a new life in the vastness that is space. From jumpstarting organic life to creating 

versatile biomaterials and being efficient cell factories, the potential applications of fungi in space 

are incredibly vast. While several examples from the literature are included in this section, the list 

is by no means exhaustive as there are many more applications of fungi on Earth that could 

potentially be applicable to space (Fig. 3). Some examples include: production of pharmaceutical 

drugs, enzymes, preservatives, acidulants, flavour enhancers, antioxidants, beverages, detergents, 

cosmetics, paper, rubber, wood, textiles, leather-like materials, synthetic fibers and resins, plastics, 

surfactants, oil additives, as well as using fungi directly as food (Cortesão et al. 2020b). 

Long-term human presence in space necessitates a wide variety of versatile materials and 

technologies: shields against space radiation, life support, waste processing and remediation, 

production of medicines and food, building materials, and more. Additionally, weight (and cost) 
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constraints set stringent restrictions and demands on what materials can be taken into space; thus, 

an optimal solution is one that allows astronauts to utilise and produce materials in situ. 

Such in situ resource utilisation (ISRU) activities are most commonly associated with 

microbe-mineral interactions in roles that fungi excel at. Fungi can be used to extract essential 

mineral nutrients from extraterrestrial regolith and rock, reducing dependency on terrestrial 

resources. An astromycology project funded by NASA aimed to identify leading fungal species to 

initiate soil formation, create healthy soil matrices for plants, and enable life-support biospheres for 

the exploration of space (Shevtsov 2021). The use of microorganisms for both space biomining and 

bioremediation has been covered in depth by Santomartino et al. (2022). According to these 

authors, although promising, the science around space biomining and bioremediation is still 

relatively young, and it is pivotal to invest in terrestrial and space-based research on specific 

methods for space applications. Highlights of recent and current research include a focus on the 

possible use of microbes to extract metals from lunar or Martian soil, or even asteroids, tested with 

regolith simulants, namely with the projects BioRock (Loudon et al. 2018) and BioAsteroid 

(Santomartino et al. 2022), or the ESA Spaceship European Astronaut Centre (EAC) research on 

lunar regolith simulant EAC-1A (Engelschiøn et al. 2020). Fungal species of the genera Aspergillus 

and Penicillium seem to be particularly well suited for these activities, as they are natural producers 

of organic acids, which are essential for bioleaching and are now being studied for potential 

biomining of lunar regolith (Dusengemungu et al. 2021). 

 

 
 

Figure 3 – Production processes supported by fungi (adapted from Meyer et al. 2020). 

 

Space travel requires materials built to survive the various threats in space, whether it is 

mechanical resistance against debris or shielding against radiation. Biologically-produced 

nanocomposite materials provide unique advantages by increasing fatigue strength, weighing less 

than conventional materials, and providing more effective radiation control (Rothschild et al. 2019, 

Bhat et al. 2021). Here, advancements in a variety of fungi illustrate their ability to produce 

nanoparticle films and other fungal nanobiocomposites using metals like nickel, iron, and gold, 

which are more efficient and require fewer downstream purification processes than inorganic 

production methods (Prasad et al. 2018). 

One significant advantage of developing fungal biotechnology is that, theoretically, all that is 

needed to bring fungal species into any location (including those beyond our planet) are few fungal 
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spores or cells, which have negligible mass and can then propagate in place. Some other aspects of 

fungal physiology could find further applications in space engineering. For example, mushrooms 

and yeasts are composed primarily of water and are cooler than their environment through 

evaporative cooling (Cordero & Casadevall 2020, Husher et al. 1999) which could potentially be 

exploited for passive cooling and water repurposing. Moreover, darkly pigmented fungi can absorb 

heat from electromagnetic radiation (Cordero et al. 2018), a property that can also be explored in 

space for heat capture applications. Mycoculture in space could be further engineered into human 

habitats to store and purify water while also increasing humidity and temperature control. 

Therefore, fungal biotechnology works well to establish ISRU systems, as it allows a wide variety 

and volume of material to be produced from a minimal initial payload, with applications in several 

areas, including architectural development and material improvement of future space habitats 

(Wösten et al. 2018). 

Advantages of fungal biomaterials include lower manufacturing costs, waste reduction, 

recyclability of products, and lightweight materials that are very good at insulating, and versatility 

(they can be used to mimic even leather and brick) (Wösten et al. 2018, Pohl et al. 2022). They 

could also be combined and used for multiple functions. Fungi from the Ascomycota and 

Basidiomycota phyla can create a variety of mycelium-based biomaterials. Paired with melanin-

producing fungi, an organic growth system would allow the cultivation of high volumes of 

biomaterials, which could even be used for printing into large structures shielding from the harsh 

radiation in space (Cordero 2017, Wösten et al. 2018, Shunk et al. 2020). The same melanized 

fungi could also be used as air purification systems to filter out VOCs (Prenafeta-Boldú et al. 2019) 

and melanin harvested from them could also serve as a potential tool for mycoremediation in 

industrial water purification systems (Panzarasa et al. 2018). 

As previously highlighted, fungi can synthesise compounds with many useful properties: 

antibiotics, antimycotics, antivirals, anticancer drugs, antidiabetics, and immunosuppressives. They 

also produce a wide range of enzymes and bioactive secondary metabolites, some of which are of 

high biotechnological interest. Such biosynthetic activity can be influenced under real or simulated 

space conditions (Section 2.3). In this regard, space stations, such as the ISS, provide unique 

environments for the potential “guided evolution” of species, leading to the emergence of strains 

with novel properties (e.g., high yield, rapid growth, improved pathogen resistance, enhanced 

tolerance, enzymes with altered biochemistry, etc.). These space stressors, which cannot be fully 

duplicated on Earth, can be used for the evolution of strains that will be more robust and productive 

than their respective wild types on Earth (Makimura et al. 2001). 

Promising results are leading to increased interest in the potential production of pigments and 

other secondary metabolites by microorganisms exposed to spaceflight conditions. Several 

spaceflight and ground-simulated experiments have demonstrated enhanced production of 

pharmaceutically relevant secondary metabolites from different fungi (Knox et al. 2016, 

Blachowicz et al. 2019b, Romsdahl et al. 2019), in gene clusters that are either silent or expressed 

at very low concentrations under normal, terrestrial conditions. Moreover, in space, cells can 

produce certain secondary metabolites in suspension and in the absence of shear forces (Friedrich et 

al. 2007), offering unique advantages for bioprocessing applications (Bijlani et al. 2021). 

The degradation capabilities of fungi can also be a point of interest. Although, generally, the 

breakdown of materials by microorganisms is mainly undesirable, depending on the circumstances, 

the same process may be harmful or beneficial (Hueck 2001). For instance, fungal biodegradation 

skills proved effective towards plastics (mainly aliphatic polyesters, aromatic co-polyesters, and 

polyethylene), as largely documented by research work investigating the use of fungal enzymatic 

systems for waste polymer disposal (Webb et al. 2000, Friedrich et al. 2007, Srikanth et al. 2022). 

Some well-known fungi showing effective degradation on plastics include several filamentous 

species (e.g., A. flavus, A. nidulans, Aspergillus oryzae, C. cladosporioides, Phanerochaete 

chrysosporium) and saprotrophic species (e.g., Agaricus bisporus, Pleurotus abalones, Pleurotus 

ostreatus) (Brunner et al. 2018, Muhonja et al. 2018, Daly et al. 2021, Srikanth et al. 2022). 

However, recent reports have indicated extremophilic species as a source of enzymes 
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(extremozymes) with catalytic efficacy towards degradation-recalcitrant materials and stability and 

activity at broader ranges of various physical-chemical parameters (Gostinčar et al. 2014, Tesei et 

al. 2020, Borthakur et al. 2021, Spina et al. 2021). This suggests that stress-resistant species are 

capable of enhanced degradation and might be of increased relevance in the context of space 

exploration and ensuring its sustainability. 

We’re still in the first steps of defining a list of helpful species for space-based applications. 

However, one fungal species seen as key for future application in space is A. niger, as it has long 

been explored for several applications (Cairns et al. 2018) and is now being included in many 

space-linked experiments. With an already-proven track record as an efficient production system of 

varying organic substrates, A. niger could help with the in-situ production of organic resources 

(Cortesão et al. 2020a). The applications of A. niger range from secreting enzymes useful in the 

hydrolysis of polymers and organic acids to producing a diverse range of proteins and secondary 

metabolites (Cairns et al. 2018). A. niger is currently used in industrial scale production of citric 

acid, which has wide applications in foods, beverages, textiles, biofuels, cosmetics, and 

pharmaceutics (Currie 1917, Tong et al. 2019, Behera 2020, Cortesão et al. 2020a). 

Fungal biotechnology is a valuable tool in humanity’s arsenal as we venture to explore space 

and can enable human sustainability and resource independence from Earth (Cortesão et al. 2020b). 

However, it is important to acknowledge the difficulties in transferring and applying such 

technologies and the fact that many questions still remain. 

In what ways can fungi aid space exploration? Is the production and utilisation of fungi in 

space feasible? Which species of fungi are optimal for use in space? What are the setbacks to their 

application? How will we grow fungi in space? What equipment should be used to harness the 

materials? Where will the oxygen, nitrogen, phosphorus, water, etc. needed to grow the fungi come 

from? What will happen when materials are exposed to solar flares or radiation (Wösten et al. 

2018)? These are but a few questions; there are a myriad more waiting to be asked, addressed, and 

answered by further research in this field. 

Future astromycology research regarding application of fungal biotechnology in space should 

address these questions. In particular, the development of novel biotechnological processes should 

prioritise integration of such processes within already existing spacecraft systems (e.g., life-support, 

crop-cultivation and waste-recycling) in order to minimise resources and optimise sustainability. 

This asks for highly interdisciplinary endeavours that bring astromycologists, astrobiologists, 

mycologists, and space engineers together, to promote a successful and sustainable human space 

exploration. 

 

3. Tools and Resources 

 

3.1 Target journals for publishing astromycology research 

There are currently several journals with dedicated space to astrobiology. The last few years 

have brought us an increase in the inclusion of this topic, with many special issues and topics 

covered in several journals. As astromycology research falls under the astrobiology umbrella, we’re 

presenting here a wide selection of journals that currently publish astrobiology research, combined 

with relevant journals in the field of mycology, as viable targets for publishing astromycology 

papers (Table 4). 

The listed journals are organised according to their impact factor, despite some increased 

resistance against the use of this metric. Our decision is based on the continued use of impact factor 

as one of the main criteria for ranking journals. Even though journal impact factor is seen by many 

as an inappropriate way of evaluating research, it remains one of the most relevant criteria for 

career progression (impacting on recruitment, promotions, and even sometimes financial bonuses) 

and an indicator of the quality and relevance of research (Guo et al. 2021). One should also note 

that the backlash against the use of impact factor as a valid metric is not yet a global phenomenon, 

with views in Western countries (particularly the UK and the US) contrasting with those across 

several Asian countries (namely China, or Korea). 
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3.2 Useful resources for astromycology 

New findings and regular changes in taxonomic nomenclature are continuously taking place, 

affecting taxa across the three domains of Life (e.g., Wijayawardene et al. 2020, 2022). There are 

several helpful tools taxonomists can use when confirming the updated and currently accepted 

fungal names: Index Fungorum (www.indexfungorum.org/Names/Names.asp), MycoBank 

(www.mycobank.org), and the Global Biodiversity Information Facility (GBIF – www.gbif.org). 

There are also numerous webpages Researchers working with fungal species of clinical relevance 

are also affected by changes in nomenclature. There are specific tools and resources specifically 

addressing such changes in this group of fungi (e.g., www.adelaide.edu.au/mycology/fungal-

descriptions-and-antifungal-susceptibility/name-changes-for-medical-fungi). 

 

Table 4 Where to publish astromycology research (list presented in descending order according to 

impact factor available at the time of publication). 

 
Target 

journals 
Impact 

factor* 
Official 

Abbreviation** 
Publisher Periodicity OA Website 

# Nature 

Reviews 

Microbiology 

78.297 Nat. Rev. 

Microbiol. 
Springer Nature 

Limited 
Monthly No OA www.nature.com/nrmicro 

Nature 69.504 Nature Springer Nature 

Limited 
Weekly Contains 

OA 
www.nature.com 

Science 63.832 Science American 

Association for 

the Advancement 

of Science 

(AAAS) 

Weekly Contains 

OA 
www.science.org 

# Annual 

Review of 

Astronomy 

and 

Astrophysics 

37.226 Annu. Rev. 

Astron. 

Astrophys. 

Annual Reviews Annual No OA www.annualreviews.org/jou

rnal/astro 

Nature 

Microbiology 
30.964 Nat. Microbiol. Springer Nature 

Limited 
Monthly Contains 

OA 
www.nature.com/nmicrobiol 

Studies in 

Mycology 
25.731 Stud. Mycol. Centraalbureau 

Schimmelculture 
3 issues per 

year 
OA www.studiesinmycology.org 

Fungal 

Diversity 
24.902 Fungal Divers. Springer Bimonthly Contains 

OA 
www.springer.com/journal/1

3225 
Trends in 

Microbiology 
18.230 Trends 

Microbiol. 
Cell Press, 

Elsevier 
Monthly Contains 

OA 
www.cell.com/trends/micro

biology/home 
Nature 

communicatio

ns 

17.694 Nat. Commun. Springer Nature 

Limited 
Daily OA www.nature.com/ncomms 

Microbiome 16.837 Microbiome BioMed Central 

Ltd 
Daily OA https://microbiomejournal.bi

omedcentral.com 
Mycosphere 16.525 Mycosphere Mycosphere 

Press 
Annual OA www.mycosphere.org 

# Annual 

Review of 

Earth and 

Planetary 

Sciences 

16.304 Annu. Rev. Earth 

Planet. Sci. 
Annual Reviews Annual No OA www.annualreviews.org/jou

rnal/earth 

# Annual 

Review of 

Microbiology 

16.232 Annu. Rev. 

Microbiol. 
Annual Reviews Annual No OA www.annualreviews.org/jou

rnal/micro 

Nature 

Astronomy 
15.647 Nat. Astron. Springer Nature 

Limited 
Monthly No OA www.nature.com/natastron 
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Table 4 Continued. 

 
Target 

journals 

Impact 

factor* 

Official 

Abbreviation** 

Publisher Periodicity OA Website 

FEMS 

Microbiology 

Reviews 

15.177 FEMS 

Microbiol. Rev. 

Oxford 

Academic 

Bimonthly Contains 

OA 

https://academic.oup.com/fe

msre 

Science 

Advances 

14.980 Sci. Adv. American 

Association for 

the Advancement 

of Science 

(AAAS) 

Weekly OA www.science.org/journal/sci

adv 

Biological 

Reviews 
14.355 Biol. Rev. John Wiley & 

Sons, Inc. 
Bimonthly Contains 

OA 
https://onlinelibrary.wiley.c

om/journal/1469185x 
Microbiology 

and Molecular 

Biology 

Reviews 

13.044 Microbiol. Mol. 

Biol. Rev. 
American 

Society for 

Microbiology 

Quarterly No OA https://journals.asm.org/jour

nal/mmbr 

Microbiology 

Spectrum 
9.043 Microbiol. 

Spectr. 
American 

Society for 

Microbiology 

Not defined OA https://journals.asm.org/jour

nal/spectrum 

Space Science 

Reviews 
8.943 Space Sci. Rev. Springer Nature 

Switzerland AG 
8 issues per 

year 
Contains 

OA 
www.springer.com/journal/1

1214 
New 

Astronomy 

Reviews 

8.682 New Astron. 

Rev. 
Elsevier Bi-annual Contains 

OA 
www.journals.elsevier.com/

new-astronomy-reviews 

mBio 7.786 mBio American 

Society for 

Microbiology 

Bimonthly OA https://journals.asm.org/jour

nal/mbio 

mSystems 7.328 mSystems American 

Society for 

Microbiology 

Bimonthly OA https://journals.asm.org/jour

nal/msystems 

Fungal 

Biology 

Reviews 

(journal of the 

The British 

Mycological 

Society) 

6.727 Fungal Biol. 

Rev. 
Elsevier Quarterly Contains 

OA 
www.sciencedirect.com/jour

nal/fungal-biology-reviews 

iScience 6.107 iScience Cell Press Monthly OA www.cell.com/iscience/hom

e 
Frontiers in 

Microbiology 
6.064 Front. Microbiol. Frontiers Media 

S.A. 
Daily OA www.frontiersin.org/journal

s/microbiology 
Journal of 

Fungi 
5.724 J. Fungi MDPI Monthly OA www.mdpi.com/journal/jof/i

nstructions 
Environmental 

Microbiology 
5.476 Environ. 

Microbiol. 
John Wiley & 

Sons, Inc. 
Monthly Contains 

OA 
https://sfamjournals.onlineli

brary.wiley.com/journal/146

22920 
mSphere 5.029 mSphere American 

Society for 

Microbiology 

Bimonthly OA https://journals.asm.org/jour

nal/msphere 

Applied and 

Environmental 

Microbiology 

5.005 Appl. Environ. 

Microbiol. 
American 

Society for 

Microbiology 

Bimonthly Contains 

OA 
https://journals.asm.org/jour

nal/aem 

Scientific 

Reports 
4.997 Sci. Rep. Springer Nature 

Limited 
Daily OA www.nature.com/srep 

NPJ 

Microgravity 
4.970 NPJ 

Microgravity 
Nature Not regular 

(all year) 
OA www.nature.com/npjmgrav 
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Table 4 Continued. 

 
Target 

journals 

Impact 

factor* 

Official 

Abbreviation** 

Publisher Periodicity OA Website 

Microorganis

ms 

4.926 Microorganisms MDPI Monthly OA www.mdpi.com/journal/mic

roorganisms 

Fungal 

Ecology 

(journal of the 

The British 

Mycological 

Society) 

4.204 Fungal Ecol. Elsevier Bimonthly No OA www.sciencedirect.com/jour

nal/fungal-ecology 

Microbial 

Ecology 
4.192 Microb. Ecol. Springer Nature 

Switzerland AG 
Quarterly Contains 

OA 
www.springer.com/journal/2

48 
Frontiers in 

Astronomy 

and Space 

Sciences 

4.055 Front. Astron. 

Space Sci. 
Frontiers Media 

S.A. 
Daily OA www.frontiersin.org/journal

s/astronomy-and-space-

sciences 

Astrobiology 4.045 Astrobiology Mary Ann 

Liebert, Inc., 

publishers 

Monthly Contains 

OA 
https://home.liebertpub.com/

publications/astrobiology/99 

Research in 

Microbiology 
3.946 Res. Microbiol. Elsevierplane Bimonthly Contains 

OA 
www.sciencedirect.com/jour

nal/research-in-

microbiology 
PLoS One 3.752 PLoS One Public Library 

Science 
Daily OA https://journals.plos.org/plos

one 
Earth and 

Space Science 
3.680 Earth Space Sci. John Wiley & 

Sons, Inc. 
Monthly OA https://agupubs.onlinelibrary

.wiley.com/journal/2333508

4 
Life 3.253 Life MDPI Monthly OA www.mdpi.com/journal/life 
PeerJ (Life & 

environment) 
3.061 PeerJ PeerJ Publishing Not defined OA https://peerj.com/life-

environment 
Extremophiles 3.035 Extremophiles Springer Nature 

Switzerland AG 
Not defined No OA www.springer.com/journal/7

92 
Microbiology 

(journal of the 

Microbiology 

Society) 

2.956 Microbiology-

(UK) 
Microbiology 

Society 
Monthly OA (from 

Jan 2023) 
www.microbiologyresearch.

org/content/journal/micro 

Acta 

Astronautica 
2.954 Acta Astronaut. Elsevier Monthly No OA www.sciencedirect.com/jour

nal/acta-astronautica 
Fungal 

Biology 

(journal of the 

The British 

Mycological 

Society) 

2.910 Fungal Biol. Elsevier Monthly Contains 

OA 
www.sciencedirect.com/jour

nal/fungal-biology 

Life Sciences 

in Space 

Research 

2.730 Life Sci. Space 

Res. 
Elsevier Quarterly Contains 

OA 
www.journals.elsevier.com/l

ife-sciences-in-space-

research 
Advances in 

Space 

Research 

2.611 Adv. Space Res. Elsevier Bimonthly Contains 

OA 

www.sciencedirect.com/jour

nal/advances-in-space-

research 

Microbes and 

Environments 

2.596 Microbes 

Environ. 

Japanese Society 

of Microbial 

Ecology / 

Japanese Society 

of Soil 

Microbiology / 

Taiwan Society  

Quarterly OA www.jstage.jst.go.jp/browse

/jsme2/-char/en 
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Table 4 Continued. 

 
Target 

journals 

Impact 

factor* 

Official 

Abbreviation** 

Publisher Periodicity OA Website 

   of Microbial 

Ecology / 

Japanese Society 

of Plant Microbe 

Interactions / 

Japanese Society 

for 

Extremophiles 

   

Planetary and 

Space Science 

2.085 Planet Space Sci. Elsevier Monthly Contains 

OA 

www.sciencedirect.com/jour

nal/planetary-and-space-

science 

Mycobiology 

(journal of the 

Korean 

Society of 

Mycology) 

1.946 Mycobiology Taylor and 

Francis group 

Bimonthly OA www.tandfonline.com/journ

als/tmyb20 

Astrophysics 

and Space 

Science 

1.9 Astrophys. Space 

Sci. 

Springer Monthly Hybrid, 

contains 

OA 

www.springer.com/journal/1

0509 

Microgravity 

Science and 

Technology 

1.642 Microgravity Sci. 

Technol. 

Springer Nature 

Switzerland AG 

Bimonthly Hybrid, 

contains 

OA 

www.springer.com/journal/1

2217 

International 

Journal of 

Astrobiology 

1.358 Int. J. 

Astrobiology 

Cambridge 

University Press 

Bimonthly Contains 

OA 

www.cambridge.org/core/jo

urnals/international-journal-

of-astrobiology 

Mycoscience 

(official 

English 

journal of the 

Mycological 

Society of 

Japan) 

1.333 Mycoscience Elsevier Bimonthly Contains 

OA 

www.journals.elsevier.com/

mycoscience 

Origins of 

Life and 

Evolution of 

Biospheres 

(journal of the 

International 

Astrobiology 

Society) 

1.120 Orig. Life Evol. 

Biosph. 

Springer Quarterly Contains 

OA 

www.springer.com/journal/1

1084 

Fungal 

Interactions 

(journal of the 

British 

Mycological 

Society) 

- Fungal 

Interactions 

Elsevier Not defined OA www.journals.elsevier.com/

fungal-interactions 

BioCosmos - BioCosmos Sciendo Annual OA https://sciendo.com/journal/

BIOCOSMOS 

*According to the Journal Citation Reports of Clarivate Analytics for 2022. **According to the 

Standard Journal Abbreviation (ISO4). #Only upon invitation. OA = Open Access. 

 

Another relevant issue when discussing research in Astromycology is that of strain 

availability and access. While the role of Biological Resource Centers (BRCs) is widely recognised 

as essential for ensuring reproducibility of results and public access to type strains, among many 
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other key services (e.g., Antunes et al. 2016), there are clear limitations in accessing relevant non-

type strains. As highlighted by Rettberg et al. 2019, microbial strains from SAFs cleanrooms and 

spacecrafts from ESA missions are deposited in a public collection, but the same cannot be said for 

NASA and other space agencies. Such strains cannot be obtained for basic research, limiting 

relevant studies in this field. These authors propose the establishment and maintenance of an 

international culture collection for all such microbes, which would constitute a valuable resource 

for astrobiology (and astromycology). 

As a final note, the ongoing explosive increase in dispersed data about new fungal strains of 

relevance for astromycology, including their general properties and results of exposure tests, will 

increasingly make it difficult to navigate this growing pool of useful resources. The need for 

dedicated tools that compile such information and facilitate their exploration for identifying 

knowledge gaps and potential novel research directions has been recently demonstrated for the 

archaeal class Halobacteria by Wu et al. (2022). This is equally applicable to fungal strains, so 

community-wide efforts and the development of such tools should be set as key priorities for the 

astromycology community. 
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