143 research outputs found

    Sanitation of blackwater via sequential wetland and electrochemical treatment

    Get PDF
    The discharge of untreated septage is a major health hazard in countries that lack sewer systems and centralized sewage treatment. Small-scale, point-source treatment units are needed for water treatment and disinfection due to the distributed nature of this discharge, i.e., from single households or community toilets. In this study, a high-rate-wetland coupled with an electrochemical system was developed and demonstrated to treat septage at full scale. The full-scale wetland on average removed 79 +/- 2% chemical oxygen demand (COD), 30 +/- 5% total Kjeldahl nitrogen (TKN), 58 +/- 4% total ammoniacal nitrogen (TAN), and 78 +/- 4% orthophosphate. Pathogens such as coliforms were not fully removed after passage through the wetland. Therefore, the wetland effluent was subsequently treated with an electrochemical cell with a cation exchange membrane where the effluent first passed through the anodic chamber. This lead to in situ chlorine or other oxidant production under acidifying conditions. Upon a residence time of at least 6 h of this anodic effluent in a buffer tank, the fluid was sent through the cathodic chamber where pH neutralization occurred. Overall, the combined system removed 89 +/- 1% COD, 36 +/- 5% TKN, 70 +/- 2% TAN, and 87 +/- 2% ortho-phosphate. An average 5-log unit reduction in coliform was observed. The energy input for the integrated system was on average 16 +/- 3 kWh/m(3), and 11 kWh/m(3) under optimal conditions. Further research is required to optimize the system in terms of stability and energy consumption

    Hyperspectral Sensing Techniques Applied to Bio-masses Characterization: The Olive Husk Case

    Full text link
    Olive husk (OH) quality, in respect of constituting particles characteristics (olive stones and pulp residues as result after pressing), represents an important issue. OH particles size class distribution and composition play, in fact, an important role for OH utilization as: organic amendment, bio-mass, food ingredient, plastic filler, abrasive, raw material in the cosmetic sector, dietary animal supplementation, etc. . OH is characterised by a strong variability according to olive characteristics and olive oil production process. Actually it does not exist any strategy able to quantify OH chemical-physical attributes versus its correct utilisation adopting simple, efficient and low costs analytical tools. Furthermore the possibility to perform its continuous monitoring, without any samples collection and analysis at laboratory scale, could strongly enhance OH utilization, with a great economic and environmental benefits. In this paper an analytical approach, based on HyperSpectral Imaging (HSI) is presented. HSI allows to perform, also on-line, a full quantification of OH characteristics in order to qualify this product for its further re-use, with particular reference as bio-mass. HSI was applied to different samples of OH, characterized by different moisture, different residual pulp content and different size class distributions. Results are presented and critically evaluated. © 2011 IFIP International Federation for Information Processing

    Brine recovery from hypersaline wastewaters from table olive processing by combination of biological treatment and membrane technologies

    Full text link
    [EN] The fermentation brines from table olive processing (FTOP) are hypersaline effluents (conductivities higher than 75 mS·cm-1) with high organic matter concentrations (COD around 10 g·L-1), which also include phenolic compounds (between 700 and 1500 mg TY·L-1). In this work, an integrated process for the FTOP reuse as brine in the table olive processing has been evaluated. This integrated process consisted of a biological treatment followed by a membrane system, which included ultrafiltration (UF) plus nanofiltration (NF). The biological treatment was carried out by 6 L laboratory sequencing batch reactor (SBR). UF and NF were performed in laboratory plants for flat membranes of 0.0125 and 0.0072 m2, respectively. Each stream generated during the FTOP treatment (SBR effluent, and UF and NF permeates) were evaluated. The SBR eliminated around 80% of COD and 71% of total phenols concentration. In the final NF permeate the COD concentration was lower than 125 mg·L-1; while the turbidity, colour and phenolic compounds, were completely removed.The authors of this work thank the financial support of CDTI (Centre for Development Technological Industrial) depending on the Spanish Ministry of Science and Innovation.Ferrer-Polonio, E.; Carbonell Alcaina, C.; Mendoza Roca, JA.; Iborra Clar, A.; Alvarez Blanco, S.; Bes-Piá, M.; Pastor Alcañiz, L. (2017). Brine recovery from hypersaline wastewaters from table olive processing by combination of biological treatment and membrane technologies. Journal of Cleaner Production. 142:1377-1386. doi:10.1016/j.jclepro.2016.11.169S1377138614

    An alternative approach of UASB dynamic modeling

    No full text
    corecore