520 research outputs found

    Comparison of the Sequential Organ Failure Assessment (SOFA) and Quick SOFA Scores in Predicting in-Hospital Mortality among Adult Critical Care Patients with Suspected Infection

    Get PDF
    Introduction: Sepsis is global health priority and the leading cause of death in critical care. The SEPSIS 3 criteria introduced in 2016 is the latest tool in diagnosing sepsis. It uses SOFA and qSOFA scores in place of the SIRS criteria for better ability to predict mortality in patients with suspected infections. The performance of these scores in critical care units outside high-income countries remains largely unknown. Methods: We compared the performance of SOFA and qSOFA in predicting the in-hospital mortality of an adult critical care unit in Kenya. We conducted a retrospective review of all patients admitted to the critical care units with suspected infection between 1 January 2017 and 31 December 2017. A standardized electronic data collection tool was be used to collect demographic, clinical and outcome data on the participants. Area under the receiver operating characteristic curves (AUROC) with 95% confidence intervals was used to compare SOFA and qSOFA. Results: We enrolled 450 patients with a mean age of 56 years [SD ± 19.10] and 57.60% were male. Majority of the patients, 352 (78.20%), presented through the emergency department. Pneumonia was the commonest source of infection 293 (65.10%). There were 92 deaths (mortality rate of 20.44%). The majority of patients, 371 (82.44%) manifested a SOFA score of ≥ 2 and 190 (42.22%) had a qSOFA score of ≥ 2. SOFA score was superior in predicting in hospital mortality compared to qSOFA with an AUROC = 0.799 [0.752-0.846] vs. 0.694 [0.691-0.748, P \u3c 0.001]. Conclusion: A SOFA score of two or more is better than qSOFA score in predicting in-hospital mortality among adult critical care patients with suspected infection. This finding suggests that SOFA is an appropriate tool in the initial diagnosis sepsis in critical care setting in a developing country

    Cardiorespiratory fitness levels and their association with cardiovascular profile in patients with rheumatoid arthritis: a cross-sectional study.

    Get PDF
    OBJECTIVE: The aim of this study was to investigate the association of different physical fitness levels [assessed by the maximal oxygen uptake (VO2max) test] with cardiovascular disease (CVD) risk factors in patients with RA. METHODS: A total of 150 RA patients were assessed for cardiorespiratory fitness with a VO2max test and, based on this, were split in three groups using the 33rd (18.1 ml/kg/min) and 66th (22.4 ml/kg/min) centiles. Classical and novel CVD risk factors [blood pressure, body fat, insulin resistance, cholesterol, triglycerides, high-density lipoprotein (HDL), physical activity, CRP, fibrinogen and white cell count], 10-year CVD risk, disease activity (DAS28) and severity (HAQ) were assessed in all cases. RESULTS: Mean VO2max for all RA patients was 20.9 (s.d. 5.7) ml/kg/min. The 10-year CVD risk (P = 0.003), systolic blood pressure (P = 0.039), HDL (P = 0.017), insulin resistance and body fat (both at P < 0.001), CRP (P = 0.005), white blood cell count (P = 0.015) and fibrinogen (P < 0.001) were significantly different between the VO2max tertiles favouring the group with the higher VO2max levels. In multivariate analyses of variance, VO2max was significantly associated with body fat (P < 0.001), HDL (P = 0.007), insulin resistance (P < 0.003) and 10-year CVD risk (P < 0.001), even after adjustment for DAS28, HAQ and physical activity. CONCLUSION: VO2max levels are alarmingly low in RA patients. Higher levels of VO2max are associated with a better cardiovascular profile in this population. Future studies need to focus on developing effective behavioural interventions to improve cardiorespiratory fitness in RA

    MannDB – A microbial database of automated protein sequence analyses and evidence integration for protein characterization

    Get PDF
    BACKGROUND: MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data. DESCRIPTION: MannDB is a relational database that organizes data resulting from fully automated, high-throughput protein-sequence analyses using open-source tools. Types of analyses provided include predictions of cleavage, chemical properties, classification, features, functional assignment, post-translational modifications, motifs, antigenicity, and secondary structure. Proteomes (lists of hypothetical and known proteins) are downloaded and parsed from Genbank and then inserted into MannDB, and annotations from SwissProt are downloaded when identifiers are found in the Genbank entry or when identical sequences are identified. Currently 36 open-source tools are run against MannDB protein sequences either on local systems or by means of batch submission to external servers. In addition, BLAST against protein entries in MvirDB, our database of microbial virulence factors, is performed. A web client browser enables viewing of computational results and downloaded annotations, and a query tool enables structured and free-text search capabilities. When available, links to external databases, including MvirDB, are provided. MannDB contains whole-proteome analyses for at least one representative organism from each category of biological threat organism listed by APHIS, CDC, HHS, NIAID, USDA, USFDA, and WHO. CONCLUSION: MannDB comprises a large number of genomes and comprehensive protein sequence analyses representing organisms listed as high-priority agents on the websites of several governmental organizations concerned with bio-terrorism. MannDB provides the user with a BLAST interface for comparison of native and non-native sequences and a query tool for conveniently selecting proteins of interest. In addition, the user has access to a web-based browser that compiles comprehensive and extensive reports. Access to MannDB is freely available at

    The lacuna of capital, the state and war? The lost global history and theory of Eastern agency

    Get PDF
    In this article I seek to constructively engage Alex Anievas’s seminal book that is deservedly the subject of this forum. For Anievas has become a key figure in the revival of Trotskyism in IR and his is one of the first book-length treatments of the New Trotskyist theory of the international. My critique is meant merely as a constructive effort to push his excellent scholarship further in terms of developing his non-Eurocentric approach. In the first section I argue that his book represents a giant leap forward for the New Trotskyist IR. However, in the following sections I argue that although undeniably a brave attempt nevertheless, in the last instance, Anievas falls a few steps short in realising a genuinely non-Eurocentric account of world politics. This is because while he certainly restores or brings in ‘the lost theory and history of IR’ that elevates class forces to a central role in shaping world politics, nevertheless he fails to bring in ‘the lost global theory and history of Eastern agency’ that constitutes, in my view, the key ingredient of a non-Eurocentric approach to world politics. I also argue that while his anti-reductionist ontological credentials are for the most part extremely impressive, nevertheless, I argue that these are compromised in his analysis of Hitler’s racism. Finally, in the conclusion I ask whether the theoretical architecture of the New Trotskyism in IR is capable of developing a non-Eurocentric approach before concluding in the affirmative with respect to its modern revisionist incarnation of which Anievas is in the vanguard

    Using the TAP Component of the Antigen-Processing Machinery as a Molecular Adjuvant

    Get PDF
    We hypothesize that over-expression of transporters associated with antigen processing (TAP1 and TAP2), components of the major histocompatibility complex (MHC) class I antigen-processing pathway, enhances antigen-specific cytotoxic activity in response to viral infection. An expression system using recombinant vaccinia virus (VV) was used to over-express human TAP1 and TAP2 (VV-hTAP1,2) in normal mice. Mice coinfected with either vesicular stomatitis virus plus VV-hTAP1,2 or Sendai virus plus VV-hTAP1,2 increased cytotoxic lymphocyte (CTL) activity by at least 4-fold when compared to coinfections with a control vector, VV encoding the plasmid PJS-5. Coinfections with VV-hTAP1,2 increased virus-specific CTL precursors compared to control infections without VV-hTAP1,2. In an animal model of lethal viral challenge after vaccination, VV-hTAP1,2 provided protection against a lethal challenge of VV at doses 100-fold lower than control vector alone. Mechanistically, the total MHC class I antigen surface expression and the cross-presentation mechanism in spleen-derived dendritic cells was augmented by over-expression of TAP. Furthermore, VV-hTAP1,2 increases splenic TAP transport activity and endogenous antigen processing, thus rendering infected targets more susceptible to CTL recognition and subsequent killing. This is the first demonstration that over-expression of a component of the antigen-processing machinery increases endogenous antigen presentation and dendritic cell cross-presentation of exogenous antigens and may provide a novel and general approach for increasing immune responses against pathogens at low doses of vaccine inocula

    A Condensation-Ordering Mechanism in Nanoparticle-Catalyzed Peptide Aggregation

    Get PDF
    Nanoparticles introduced in living cells are capable of strongly promoting the aggregation of peptides and proteins. We use here molecular dynamics simulations to characterise in detail the process by which nanoparticle surfaces catalyse the self- assembly of peptides into fibrillar structures. The simulation of a system of hundreds of peptides over the millisecond timescale enables us to show that the mechanism of aggregation involves a first phase in which small structurally disordered oligomers assemble onto the nanoparticle and a second phase in which they evolve into highly ordered beta-sheets as their size increases
    corecore