424 research outputs found

    A thermoelectric power generating heat exchanger: Part I - Experimental realization

    Get PDF
    An experimental realization of a heat exchanger with commercial thermoelectric generators (TEGs) is presented. The power producing capabilities as a function of flow rate and temperature span are characterized for two different commercial heat transfer fluids and for three different thermal interface materials. The device is shown to produce 2 W per TEG or 0.22 W cm2^{-2} at a fluid temperature difference of 175 ^\circC and a flow rate per fluid channel of 5 L min1^{-1}. One experimentally realized design produced 200 W in total from 100 TEGs. For the design considered here, the power production is shown to depend more critically on the fluid temperature span than on the fluid flow rate. Finally, the temperature span across the TEG is shown to be 55% to 75% of the temperature span between the hot and cold fluids.Comment: 9 pages, 11 figure

    Using citizen science reports to define the equatorial extent of auroral visibility

    Get PDF
    An aurora may often be viewed hundreds of kilometers equatorward of the auroral oval owing to its altitude. As such, the NOAA Space Weather Prediction Center (SWPC) Aurora Forecast product provides a “view line” to demonstrate the equatorial extent of auroral visibility, assuming that it is sufficiently bright and high in altitude. The view line in the SWPC product is based upon the latitude of the brightest aurora, for each hemisphere, as specified by the real-time oval variation, assessment, tracking, intensity, and online nowcasting (OVATION) Prime (2010) aurora precipitation model. In this study, we utilize nearly 500 citizen science auroral reports to compare with the view line provided by an updated SWPC aurora forecast product using auroral precipitation data from OVATION Prime (2013). The citizen science observations were recorded during March and April 2015 using the Aurorasaurus platform and cover one large geomagnetic storm and several smaller events. We find that this updated SWPC view line is conservative in its estimate and that the aurora is often viewable further equatorward than is indicated by the forecast. By using the citizen reports to modify the scaling parameters used to link the OVATION Prime (2013) model to the view line, we produce a new view line estimate that more accurately represents the equatorial extent of visible aurora. An OVATION Prime (2013) energy flux-based equatorial boundary view line is also developed and is found to provide the best overall agreement with the citizen science reports, with an accuracy of 91%

    Photometric analysis of a space shuttle water venting

    Get PDF
    Presented here is a preliminary interpretation of a recent experiment conducted on Space Shuttle Discovery (Mission STS 29) in which a stream of liquid supply water was vented into space at twilight. The data consist of video images of the sunlight-scattering water/ice particle cloud that formed, taken by visible light-sensitive intensified cameras both onboard the spacecraft and at the AMOS ground station near the trajectory's nadir. This experiment was undertaken to study the phenomenology of water columns injected into the low-Earth orbital environment, and to provide information about the lifetime of ice particles that may recontact Space Shuttle orbits later. The findings about the composition of the cloud have relevance to ionospheric plasma depletion experiments and to the dynamics of the interaction of orbiting spacecraft with the environment

    The reported durations of GOES Soft X-Ray flares in different solar cycles

    Get PDF
    The Geostationary Orbital Environmental Satellites (GOES) Soft X-ray (SXR) sensors have provided data relating to, inter alia, the time, intensity and duration of solar flares since the 1970s. The GOES SXR Flare List has become the standard reference catalogue for solar flares and is widely used in solar physics research and space weather. We report here that in the cur- rent version of the list there are significant differences between the mean du- ration of flares which occurred before May 1997 and the mean duration of flares thereafter. Our analysis shows that the reported flare timings for the pre-May 1997 data were not based on the same criteria as is currently the case. This finding has serious implications for all those who used flare duration (or fluence, which depends on the chosen start and end times) as part of their analysis of pre-May 1997 solar events, or statistical analyses of large sam- ples of flares, e.g. as part of the assessment of a Solar Energetic Particle fore- casting algorithm

    Hymenoptera of Beulah, New Mexico

    Get PDF

    Holistic corpus-based dialectology

    Get PDF
    This paper is concerned with sketching future directions for corpus-based dialectology. We advocate a holistic approach to the study of geographically conditioned linguistic variability, and we present a suitable methodology, 'corpusbased dialectometry', in exactly this spirit. Specifically, we argue that in order to live up to the potential of the corpus-based method, practitioners need to (i) abandon their exclusive focus on individual linguistic features in favor of the study of feature aggregates, (ii) draw on computationally advanced multivariate analysis techniques (such as multidimensional scaling, cluster analysis, and principal component analysis), and (iii) aid interpretation of empirical results by marshalling state-of-the-art data visualization techniques. To exemplify this line of analysis, we present a case study which explores joint frequency variability of 57 morphosyntax features in 34 dialects all over Great Britain

    A case study comparing citizen science aurora data with global auroral boundaries derived from satellite imagery and empirical models

    Get PDF
    Aurorasaurus is a citizen science project that offers a new, global data source consisting of ground-based reports of the aurora. For this case study, aurora data collected during the 17–18 March 2015 geomagnetic storm are examined to identify their conjunctions with Defense Meteorological Satellite Program (DMSP) satellite passes over the high latitude auroral regions. This unique set of aurora data can provide ground-truth validation of existing auroral precipitation models. Particularly, the solar wind driven, Oval Variation, Assessment, Tracking, Intensity, and Online Nowcasting (OVATION) Prime 2013 (OP-13) model and a Kp-dependent model of Zhang-Paxton (Z-P) are utilized for our boundary validation efforts. These two similar models are compared for the first time. Global equatorward auroral boundaries are derived from the OP-13 model and the DMSP Special Sensor Ultraviolet Spectrographic Imager (SSUSI) far ultraviolet (FUV) data using the Z-P model at a fixed flux level of 0.2 erg cm−2 s−1. These boundaries are then compared with citizen science reports as well as with each other. Even though there are some large differences between the global boundaries for a few cases, the average difference is about 1.5° in geomagnetic latitude, with OP-13 being equatorward of Z-P model. When these boundaries are compared with each other as a function of local time, no clear overall trend as a function of local time was observed. It is also found that the ground-based reports are more consistent with the predictions of the OP-13 model

    Education for innovation and entrepreneurship in the food system: the Erasmus+ BoostEdu approach and results

    Get PDF
    Innovation and entrepreneurship are key factors to provide added value for food systems. Based on the findings of the Erasmus+ Strategic Partnership BoostEdu, the objective of this paper is to provide answers to three knowledge gaps: 1) identify the needs for innovation and entrepreneurship (I&E) in the food sector; 2) understand the best way to organize learning; 3) provide flexibility in turbulent times. BoostEdu aimed to provide a platform for continuing education within I&E for food professionals and was carried out through co-creation workshops and the development of an e-learning course. The results of the project in particular during the Covid-19 pandemics, highlighted the need for flexible access to modules that are complementary to other sources and based on a mix of theoretical concepts and practical experiences. The main lessons learned concern the need of co-creation and co-learning processes to identify suitable practices for the use of innovative digital technologies
    corecore