1,049 research outputs found

    Reliability analysis for the quench detection in the LHC machine

    Get PDF
    The Large Hadron Collider (LHC) will incorporate a large amount of superconducting elements that require protection in case of a quench. Key elements in the quench protection system are the electronic quench detectors. Their reliability will have an important impact on the down time as well as on the operational cost of the collider. The expected rates of both false and missed quenches have been computed for several redundant detection schemes. The developed model takes account of the maintainability of the system to optimise the frequency of foreseen checks, and evaluate their influence on the performance of different detection topologies. Seen the uncertainty of the failure rate of the components combined with the LHC tunnel environment, the study has been completed with a sensitivity analysis of the results. The chosen detection scheme and the maintainability strategy for each detector family are given

    A Global Review of PWR Nuclear Power Plants

    Get PDF
    [Abstract] Nuclear energy is presented as a real option in the face of the current problem of climate change and the need to reduce CO2 emissions. The nuclear reactor design with the greatest global impact throughout history and which has the most ambitious development plans is the Pressurized Water Reactor (PWR). Thus, a global review of such a reactor design is presented in this paper, utilizing the analysis of (i) technical aspects of the different variants of the PWR design implemented over the past eight years, (ii) the level of implementation of PWR nuclear power plants in the world, and (iii) a life extension scenario and future trends in PWR design based on current research and development (R&D) activity. To develop the second analysis, a statistical study of the implementation of the different PWR variants has been carried out. Such a statistical analysis is based on the operating factor, which represents the relative frequency of reactors operating around the world. The results reflect the hegemony of the western variants in the 300 reactors currently operating, highlighting the North American and French versions. Furthermore, a simulation of a possible scenario of increasing the useful life of operational PWRs up to 60 years has been proposed, seeing that in 2050 the generation capacity of nuclear PWRs power plants will decrease by 50%, and the number of operating reactors by 70%

    Synthesis and NMR structure determination of new linear geranylphenols by direct geranylation of activated phenols.

    Get PDF
    Indexación: Web of Science; ScieloThe known geranylhydroquinone 2, geranylorcinol 4 and the derivative (E)-4-(3,7-dimethylocta-2,6-dienyl)-5-methylbenzene-1,3-diol 5, were prepared by Electrophilic Aromatic Substitution (EAS) reactions between the corresponding phenol derivatives containing electron-donor subtituents and geraniol using BF3XOEt2 as a catalyst. In addition, spectroscopic NMR information for 4 and 5 is complemented. Furthermore, the new (E)-2-(3,7-dimethylocta-2,6-dienyl) benzene-1,3,5-triol (geranylphloroglucinol) 13, (E)-2-(3,7-dimethylocta-2,6-dienyl)-1,3,5-trimethoxybenzene 14, (E)-2-(3,7-dimethylocta-2,6-dienyl)-6-methoxyphenol 15, (E)-3-(3,7-dimethylocta-2,6-dienyl)-2-methoxyphenol 16, (E)-5-(3,7-dimethylocta-2,6-dienyl)-2-methoxyphenol 17, (E)-4-(3,7-dimethylocta-2,6-dienyl)benzene-1,3-diol 18, (E)-3-(3,7-dimethylocta-2,6-dienyl)benzene-1,2-diol 19, (E)-4-(3,7-dimethylocta-2,6-dienyl)-5-isopropyl-2-methylphenol 20, (E)-2-(3,7-dimethylocta-2,6-dienyl)-4-isopropyl-3-methylphenol 21, (E)-2-(3,7-dimethylocta-2,6-dienyl)-4-isopropyl-5-methylphenol 22, and(E)-2-tert-butyl-4-(3,7-dimethylocta-2,6-dienyl)-5-methylphenol 23 were also prepared with this synthesis strategy. All the synthesized compounds were fully characterized and their structures were established by IR, MS and mainly NMR spectroscopic dates.http://ref.scielo.org/3cj5t

    New Tendencies in Wind Energy Operation and Maintenance

    Get PDF
    [Abstract] Both the reduction in operating and maintenance (O&M) costs and improved reliability have become top priorities in wind turbine maintenance strategies. O&M costs typically account for 20% to 25% of the total levelized cost of electricity (LCOE) of current wind power systems. This paper provides a general review of the state of the art of research conducted on wind farm maintenance in recent years. It shows the new methods and techniques, focusing on trends and future challenges. In addition to this, this work includes a review of the following items: (i) operation and maintenance, (ii) failure rate, (iii) reliability, (iv) condition monitoring, (v) maintenance strategies, (vi) maintenance and life cycle and (vii) maintenance optimization As for offshore wind turbines, it is crucial to limit the maximum faults, since the maintenance of these wind farms is more complex both technically and logistically. Research into wind farm maintenance increased by 87% between 2007 and 2019, with more than 38,000 papers (Scopus) including “wind energy” as the main topic and some keywords related to O&M costs. The LCOE in onshore wind projects has decreased by 45%, while in offshore projects it has decreased by 28%. The O&M costs of onshore wind projects fell 52%, while in the case of offshore projects, they have declined 45%. Thus, the results obtained in this paper suggest that there is a change in research on wind farm operation and maintenance, as in recent years, scientific interest in failure has been increasing, while interest in the various techniques of wind farm maintenance and operation has been decreasing.This research was funded by the University of A Coruña (Spain) (Grant No. 64900)

    Biological treatment of contaminated air with toluene in an airlift reactor

    Get PDF
    In this work the variation in the toluene elimination capacity of an airlift bioreactor as a function of the toluene inlet load, using compost as the support material for the microorganisms was studied. In order to evaluate the flexibility of the reactor under changing toluene load, the toluene biodegradation was measured for flows from 2.4 x 10-2 to 0.132 m3 h-1, and a concentration range from 1.4 to 0.8 g m-3. Results show a 100% removal efficiency (RE) for minor flows, however, for a flow increase of 450% the RE decreased 40%, reflecting the equipments weak flexibility in varying flows. Meanwhile the maximum elimination capacity obtained was 230 g m-3 h-1, for toluene loads of 550 g m-3 h-1, corresponding to a flow of 0.132 m3 h-1. It was found that a average biomass concentration in suspension of 3700 g m-3, reflected EC's of 203 g m-3 h-1

    Information Management within the LHC Hardware Commissioning Project

    Get PDF
    The core task of the commissioning of the LHC technical systems was the individual test of the 1572 superconducting circuits of the collider, the powering tests. The two objectives of these tests were the validation of the different sub-systems making each superconducting circuit as well as the validation of the superconducting elements of the circuits in their final configuration in the tunnel. A wide set of software applications were developed by the team in charge of coordinating the powering activities (Hardware Commissioning Coordination) in order to manage the amount of information required for the preparation, execution and traceability of the tests. In all the cases special care was taken in order to keep the tools consistent with the LHC quality assurance policy, avoid redundancies between applications, ensure integrity and coherence of the test results and optimise their usability within an accelerator operation environment. This paper describes the main characteristics of these tools; it details their positive impact on the completion on time of the LHC Hardware Commissioning Project and presents usage being envisaged during the coming years of operation of the LHC

    Optimization of the powering tests of the LHC superconducting circuits

    Get PDF
    The Large Hadron Collider has (LHC) 1572 superconducting circuits which are distributed along the eight 3.5 km LHC sectors [1]. Time and resources during the commissioning of the LHC technical systems were mostly consumed by the powering tests of each circuit. The tests consisted in carrying out several powering cycles at different current levels for each superconducting circuit. The Hardware Commissioning Coordination was in charge of planning, following up and piloting the execution of the test program. The first powering test campaign was carried out in summer 2007 for sector 7-8 with an expected duration of 12 weeks. The experience gained during these tests was used by the commissioning team for minimising the duration of the following powering campaigns to comply with the stringent LHC project deadlines. Improvements concerned several areas: strategy, procedures, control tools, automatization, and resource allocation led to an average daily test rate increase from 25 to 200 tests per day. This paper describes these improvements and details their impact on the operation during the last months of LHC Hardware Commissioning

    Heterologous Systemic Prime–Intranasal Boosting Using a Spore SARS-CoV-2 Vaccine Confers Mucosal Immunity and Cross-Reactive Antibodies in Mice as well as Protection in Hamsters

    Get PDF
    Background: Current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are administered systemically and typically result in poor immunogenicity at the mucosa. As a result, vaccination is unable to reduce viral shedding and transmission, ultimately failing to prevent infection. One possible solution is that of boosting a systemic vaccine via the nasal route resulting in mucosal immunity. Here, we have evaluated the potential of bacterial spores as an intranasal boost. Method: Spores engineered to express SARS-CoV-2 antigens were administered as an intranasal boost following a prime with either recombinant Spike protein or the Oxford AZD1222 vaccine. Results: In mice, intranasal boosting following a prime of either Spike or vaccine produced antigen-specific sIgA at the mucosa together with the increased production of Th1 and Th2 cytokines. In a hamster model of infection, the clinical and virological outcomes resulting from a SARS-CoV-2 challenge were ameliorated. Wuhan-specific sIgA were shown to cross-react with Omicron antigens, suggesting that this strategy might offer protection against SARS-CoV-2 variants of concern. Conclusions: Despite being a genetically modified organism, the spore vaccine platform is attractive since it offers biological containment, the rapid and cost-efficient production of vaccines together with heat stability. As such, employed in a heterologous systemic prime–mucosal boost regimen, spore vaccines might have utility for current and future emerging diseases.info:eu-repo/semantics/publishedVersio

    ACORDE a Cosmic Ray Detector for ALICE

    Get PDF
    ACORDE is one of the ALICE detectors, presently under construction at CERN. It consists of an array of plastic scintillator counters placed on the three upper faces of the ALICE magnet. It will act as a cosmic ray trigger, and, together with other ALICE sub-detectors, will provide precise information on cosmic rays with primary energies around 1015÷101710^{15} \div 10^{-17} eV. Here we describe the design review of ACORDE along with the present status and integration into ALICE.Comment: 2 pages, 2 figures. Conference Proceeding of the X Pisa Meeting on Advanced Detectors, to be published in a special issue of Nuclear Instruments and Method
    corecore