19 research outputs found

    Tightening the pores to unload the phloem

    Get PDF
    Root growth depends on the shoot-to-root transport of assimilates through the phloem, which is connected to the meristems by plasmodesmata pores. A PHLOEM UNLOADING MODULATOR is now identified to regulate plasmodesmata internal organisation, leading to pores that appear tighter but are more efficient for transport

    A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis

    Get PDF
    Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general

    Cost-effectiveness of a stepped-care intervention to prevent major depression in patients with type 2 diabetes mellitus and/or coronary heart disease and subthreshold depression: design of a cluster-randomized controlled trial

    Get PDF
    Background: Co-morbid major depression is a significant problem among patients with type 2 diabetes mellitus and/or coronary heart disease and this negatively impacts quality of life. Subthreshold depression is the most important risk factor for the development of major depression. Given the highly significant association between depression and adverse health outcomes and the limited capacity for depression treatment in primary care, there is an urgent need for interventions that successfully prevent the transition from subthreshold depression into a major depressive disorder. Nurse led stepped-care is a promising way to accomplish this. The aim of this study is to evaluate the cost-effectiveness of a nurse-led indicated stepped-care program to prevent major depression among patients with type 2 diabetes mellitus and/or coronary heart disease in primary care who also have subthreshold depressive symptoms.Methods/design: An economic evaluation will be conducted alongside a cluster-randomized controlled trial in approximately thirty general practices in the Netherlands. Randomization takes place at the level of participating practice nurses. We aim to include 236 participants who will either receive a nurse-led indicated stepped-care program for depressive symptoms or care as usual. The stepped-care program consists of four sequential but flexible treatment steps: 1) watchful waiting, 2) guided self-help treatment, 3) problem solving treatment and 4) referral to the general practitioner. The primary clinical outcome measure is the cumulative incidence of major depressive disorder as measured with the Mini International Neuropsychiatric Interview. Secondary outcomes include severity of depressive symptoms, quality of life, anxiety and physical outcomes. Costs will be measured from a societal perspective and include health care utilization, medication and lost productivity costs. Measurements will be performed at baseline and 3, 6, 9 and 12 months.Discussion: The intervention being investigated is expected to prevent new cases of depression among people with type 2 diabetes mellitus and/or coronary heart disease and subthreshold depression, with subsequent beneficial effects on quality of life, clinical outcomes and health care costs. When proven cost-effective, the program provides a viable treatment option in the Dutch primary care system.Trial registration: Dutch Trial Register NTR3715. © 2013 van Dijk et al.; licensee BioMed Central Ltd

    Plant vascular development: from early specification to differentiation.

    Get PDF
    Vascular tissues in plants are crucial to provide physical support and to transport water, sugars and hormones and other small signalling molecules throughout the plant. Recent genetic and molecular studies have identified interconnections among some of the major signalling networks that regulate plant vascular development. Using Arabidopsis thaliana as a model system, these studies enable the description of vascular development from the earliest tissue specification events during embryogenesis to the differentiation of phloem and xylem tissues. Moreover, we propose a model for how oriented cell divisions give rise to a three-dimensional vascular bundle within the root meristem
    corecore