288 research outputs found

    Setting high expectations is not enough: linkages between expectation climate strength, trust, and employee performance

    Get PDF
    Drawing on Climate Theory and Social Exchange Theory, we examine whether and how the strength of the expectation climate, defined as the degree of agreement amongst job incumbents on what is expected from them, affects their job performance. To explain this relationship, we utilize mediating trust-in-the-organization effects as an explanatory avenue. In a time-lagged data sample of 568 public service employees, whose job performance is rated by their 242 line managers, we apply multilevel modelling. We employed stratified random sampling techniques across 75 job functions in a large, public sector organization in Belgium. Our analysis provides support for the argument that expectation climate strength via mediating trust-in-the-organization effects impacts positively on the relationship between employee expectations and performance. Specifically, the significant association of the expectation climate strength with trust suggests that the perceived consensus about the expectations among different job incumbents demonstrates an organization’s trustworthiness and reliability to pursue intentions that are deemed favorable for employees. We conjecture that expectation climate strength breeds trust which strengthens employees’ job performance. HRM professionals in general, and line managers in particular, should heed our advice and carefully manage their tools and practices in an effort to signal compatible expectancies to different job incumbents in the same or similar roles. Our results shed new light on the mechanisms through which the strength of collective expectations impacts employee outcomes

    Spinon confinement in a quasi one dimensional anisotropic Heisenberg magnet

    Get PDF
    Confinement is a process by which particles with fractional quantum numbers bind together to form quasiparticles with integer quantum numbers. The constituent particles are confined by an attractive interaction whose strength increases with increasing particle separation and as a consequence, individual particles are not found in isolation. This phenomenon is well known in particle physics where quarks are confined in baryons and mesons. An analogous phenomenon occurs in certain magnetic insulators; weakly coupled chains of spins S=1/2. The collective excitations in these systems is spinons (S=1/2). At low temperatures weak coupling between chains can induce an attractive interaction between pairs of spinons that increases with their separation and thus leads to confinement. In this paper, we employ inelastic neutron scattering to investigate the spinon confinement in the quasi-1D S=1/2 XXZ antiferromagnet SrCo2V2O8. Spinon excitations are observed above TN in quantitative agreement with established theory. Below TN the pairs of spinons are confined and two sequences of meson-like bound states with longitudinal and transverse polarizations are observed. Several theoretical approaches are used to explain the data. A new theoretical technique based on Tangent-space Matrix Product States gives a very complete description of the data and provides good agreement not only with the energies of the bound modes but also with their intensities. We also successfully explained the effect of temperature on the excitations including the experimentally observed thermally induced resonance between longitudinal modes below TN ,and the transitions between thermally excited spinon states above TN. In summary, our work establishes SrCo2V2O8 as a beautiful paradigm for spinon confinement in a quasi-1D quantum magnet and provides a comprehensive picture of this process.Comment: 17 pages, 18 figures, submitted to PR

    Posterior muscle chain activity during various extension exercises: An observational study

    Get PDF
    Background: Back extension exercises are often used in the rehabilitation of low back pain. However, at present it is not clear how the posterior muscles are recruited during different types of extension exercises. Therefore, the present study will evaluate the myoelectric activity of thoracic, lumbar and hip extensor muscles during different extension exercises in healthy persons. Based on these physiological observations we will make recommendations regarding the use of extensions exercises in clinical practice. Methods. Fourteen healthy subjects performed four standardized extension exercises (dynamic trunk extension, dynamic-static trunk extension, dynamic leg extension, dynamic-static leg extension) in randomized order at an intensity of 60% of 1-RM (one repetition maximum). Surface EMG signals of Latissimus dorsi (LD), Longissimus thoracis pars thoracic (LTT) and lumborum (LTL), Iliocostalis lumborum pars thoracic (ILT) and lumborum (ILL), lumbar Multifidus (LM) and Gluteus Maximus (GM) were measured during the various exercises. Subsequently, EMG root mean square values were calculated and compared between trunk and leg extension exercises, as well as between a dynamic and dynamic-static performance using mixed model analysis. During the dynamic exercises a 2 second concentric contraction was followed by a 2 second eccentric contraction, whereas in the dynamic-static performance, a 5 second isometric interval was added in between the concentric and eccentric contraction phase. Results: In general, the muscles of the posterior chain were recruited on a higher level during trunk extension (mean ± SD, 56.6 ± 30.8%MVC) compared to leg extension (47.4 ± 30.3%MVC) (p ≤ 0.001). No significant differences were found in mean muscle activity between dynamic and dynamic-static performances (p = 0.053). The thoracic muscles (LTT and ILT) were recruited more during trunk extension (64.9 ± 27.1%MVC) than during leg extension (54.2 ± 22.1%MVC) (p = 0.045) without significant differences in activity between both muscles (p = 0.138). There was no significant differences in thoracic muscle usage between the dynamic or dynamic-static performance of the extension exercises (p = 0.574).Lumbar muscle activity (LTT, ILL, LM) was higher during trunk extension (70.6 ± 22.2%MVC) compared to leg extension (61.7 ± 27.0%MVC) (p = 0.047). No differences in myoelectric activity between the lumbar muscles could be demonstrated during the extension exercises (p = 0.574). During each exercise the LD (19.2 ± 13.9%MVC) and GM (28.2 ± 14.6%MVC) were recruited significantly less than the thoracic and lumbar muscles. Conclusion: The recruitment of the posterior muscle chain during different types of extension exercises was influenced by the moving body part, but not by the type of contraction. All muscle groups were activated at a higher degree during trunk extension compared to leg extension. Based on the recruitment level of the different muscles, all exercises can be used to improve the endurance capacity of thoracic muscles, however for improvement of lumbar muscle endurance leg extension exercises seem to be more appropriate. To train the endurance capacity of the LD and GM extension exercises are not appropriate

    Efficient variational contraction of two dimensional tensor networks with a non trivial unit cell

    Get PDF
    Tensor network states provide an efficient class of states that faithfully capture strongly correlated quantum models and systems in classical statistical mechanics. While tensor networks can now be seen as becoming standard tools in the description of such complex many-body systems, close to optimal variational principles based on such states are less obvious to come by. In this work, we generalize a recently proposed variational uniform matrix product state algorithm for capturing one-dimensional quantum lattices in the thermodynamic limit, to the study of regular two-dimensional tensor networks with a non-trivial unit cell. A key property of the algorithm is a computational effort that scales linearly rather than exponentially in the size of the unit cell. We demonstrate the performance of our approach on the computation of the classical partition functions of the antiferromagnetic Ising model and interacting dimers on the square lattice, as well as of a quantum doped resonating valence bond state.Comment: 23 pages, 8 Figure

    Prediction of falling among stroke patients in rehabilitation

    Full text link

    Co-Creative Action Research Experiments—A Careful Method for Causal Inference and Societal Impact

    Get PDF
    The rigor-versus-relevance debate in the world of academia is, by now, an old-time classic that does not seem to go away so easily. The grassroots movement Responsible Research in Business and Management, for instance, is a very active and prominent advocate of the need to change current research practices in the management domain, broadly defined. One of its main critiques is that current research practices are not apt to address day-to-day management challenges, nor do they allow such management challenges to feed into academic research. In this paper, we address this issue, and present a research design, referred to as CARE, that is aimed at building a bridge from rigor to relevance, and vice versa. In so doing, we offer a template for conducting rigorous research with immediate impact, contributing to solving issues that businesses are struggling with through a design that facilitates causal inference

    Interaction distance in the extended XXZ model

    Get PDF
    We employ the interaction distance to characterize the physics of a one-dimensional extended XXZ spin model, whose phase diagram consists of both integrable and nonintegrable regimes, with various types of ordering, e.g., a gapless Luttinger liquid and gapped crystalline phases. We numerically demonstrate that the interaction distance successfully reveals the known behavior of the model in its integrable regime. As an additional diagnostic tool, we introduce the notion of “integrability distance” and particularize it to the XXZ model to quantity how far the ground state of the extended XXZ model is from being integrable. This distance provides insight into the properties of the gapless Luttinger liquid phase in the presence of next-nearest-neighbor spin interactions which break integrability

    Spectrum of topics for World congresses and other activities of the International Society for Physical and Rehabilitation Medicine (ISPRM): A first proposal

    Get PDF
    Background: One of the objectives of the International Society for Physical and Rehabilitation Medicine is to improve the continuity of World Congresses. This requires the development of an abstract topic list for use in congress announcements and abstract submissions. Methods: An abstract topic list was developed on the basis of the definitions of human functioning and rehabilitation research, which define 5 main areas of research (biosciences in rehabilitation, biomedical rehabilitation sciences and engineering, clinical Physical and Rehabilitation Medicine (PRM) sciences, integrative rehabilitation sciences, and human functioning sciences). For the abstract topic list, these research areas were grouped according to the proposals of congress streams. In a second step, the first version of the list was systematically compared with the topics of the 2003 ISPRM World Congress. Results: The resulting comprehensive abstract topic list contains 5 chapters according to the definition of human functioning and rehabilitation research. Due to the high significance of clinical research, clinical PRM sciences were placed at the top of the list, comprising all relevant health conditions treated in PRM services. For congress announcements a short topic list was derived. Discussion: The ISPRM topic list is sustainable and covers a full range of topics. It may be useful for congresses and elsewhere in structuring research in PRM
    • …
    corecore