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Confinement is a process by which particles with fractional quantum numbers bind together to
form quasiparticles with integer quantum numbers. The constituent particles are confined by an
attractive interaction whose strength increases with increasing particle separation and as a conse-
quence, individual particles are not found in isolation. This phenomenon is well known in particle
physics where quarks are confined in baryons and mesons. An analogous phenomenon occurs in cer-
tain spatially anisotropic magnetic insulators. These can be thought of in terms of weakly coupled
chains of spins S=1/2, and a spin flip thus carries integer spin S=1. Interestingly the collective ex-
citations in these systems, called spinons, turn out to carry fractional spin quantum number S=1/2.
Interestingly, at sufficiently low temperatures the weak coupling between chains can induce an at-
tractive interaction between pairs of spinons that increases with their separation and thus leads
to confinement. In this paper, we employ inelastic neutron scattering to investigate the spinon-
confinement process in the quasi-one dimensional, spin-1/2, antiferromagnet with Heisenberg-Ising
(XXZ) anisotropy SrCo2V2O8. A wide temperature range both above and below the long-range or-
dering temperature TN=5.2 K is explored. Spinon excitations are observed above TN in quantitative
agreement with established theory. Below TN the pairs of spinons are confined and two sequences
of meson-like bound states with longitudinal and transverse polarizations are observed. Several
theoretical approaches are used to explain the data. These are based on a description in terms of
a one-dimensional, S=1/2 XXZ antiferromagnetic spin chain, where the interchain couplings are
modelled by an effective staggered magnetic mean-field. A wide range of exchange anisotropies
are investigated and the parameters specific to SrCo2V2O8 are identified. A new theoretical tech-
nique based on Tangent-space Matrix Product States gives a very complete description of the data
and provides good agreement not only with the energies of the bound modes but also with their
intensities. We also successfully explained the effect of temperature on the excitations including
the experimentally observed thermally induced resonance between longitudinal modes below TN ,
and the transitions between thermally excited spinon states above TN . In summary, our work es-
tablishes SrCo2V2O8 as a beautiful paradigm for spinon confinement in a quasi-one dimensional
quantum magnet and provides a comprehensive picture of this process.

PACS numbers: 75.50.Ee, 75.30.-m, 75.10.Pq

I. INTRODUCTION

Over the course of the last two decades, quasi one
dimensional (Q1D) quantum magnets have been estab-
lished as an ideal testing ground for key concepts of
quantum many-particle physics such as quantum crit-
icality [1–3], condensation of magnetic excitations [4–
8], quantum number fractionalization [9–11], dimensional
crossover [12, 13] and confinement of elementary parti-
cles. Confinement originally arose in the context of high-
energy physics as a pivotal property of quarks, but subse-
quently was realized to emerge quite naturally in one di-
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mensional quantum many-particle systems and field the-
ories featuring kink or soliton excitations [14, 15]. The
simplest such example involves domain wall (“kink”) ex-
citations in Ising-like ferromagnets, and has been ex-
plored in exquisite detail in a series of experiments by
Coldea and collaborators [16]. Confinement in ladder ma-
terials was studied in Ref. 17, while the confinement of
spinon excitations has been recently investigated on the
Q1D spin-1/2 Heisenberg-Ising antiferromagnetic com-
pound BaCo2V2O8 [18]. Here the spinon continuum,
characteristic of 1D spin-chain, observed above the three
dimensional ordering temperature TN that breaks up into
a sequence of gapped, resolution limited modes in the
3D ordered phase (T < TN ). An interesting difference
to the ferromagnetic case is that two sequences of bound
states with longitudinal and transverse polarizations re-
spectively have been observed.

In the present study we use inelastic neutron scatter-
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FIG. 1. (Color online) Crystal structure and interactions of
SrCo2V2O8. (a) The screw chain consisting of edge-sharing
CoO6 octahedra running along the crystallographic c-axis.
(b) Projection of the screw chains onto the ab-plane. The
red arrows show how the chains propagate along the c-axis.
The interactions between the Co2+ ions are indicated where
J is the intrachain interaction, and J

′

and J
′′

are interchain
interactions.

ing to investigate magnetic excitations in the Q1D spin-
1/2 XXZ system SrCo2V2O8 as a function of tempera-
ture covering both the 1D (T > TN) and 3D (T > TN)
magnetic states. The experimental results are comple-
mented by detailed theoretical considerations that pro-
vide a quantitative explanation of the experimental ob-
servations.

SrCo2V2O8 crystallizes in the centrosymmetric tetrag-
onal space group I41cd (No. 110) with lattice pa-
rameters a = b = 12.2710(1) Å and c = 8.4192(1)
Å at room temperature [19]. The magnetic Co2+ ions
are situated within CoO6 octahedra which form edge-
sharing screw chains along the crystallographic c-axis
[19, 20] (Fig. 1(a)). There are four screw chains per
unit cell which rotate in the ab-plane around (1/4, 1/4),
(1/4, 3/4), (3/4, 1/4) and (3/4, 3/4) (Fig. 1(b)). Two
diagonal chains rotate clockwise and the other two chains
rotate anti-clockwise while propagating along the c-axis.
This results in a complex interaction geometry with
many possible superexchange interaction pathways. The
strongest interaction is the antiferromagnetic intrachain
coupling J between nearest neighboring Co2+ ions along
the chains. Weak interchain interactions are possible
along both the sides (J

′

) and the diagonals (J
′′

) of the
ab-plane (Fig. 1(b)). These interchain interactions are
in fact probably comprised of several interactions due to
the screw chain structure, some of which also have com-
ponents along the c-axis as found for the isostructural
compound SrNi2V2O8 [21].

The interchain interactions stabilize long-range
collinear antiferromagnetic (AFM) order below
TN = 5.2 K [19] with the spins pointing parallel to the
c-axis (chain axis). Consecutive spins order antiferro-
magnetically along the chains while within the ab plane,
the spins order ferromagnetically/antiferromagnetically
along the a/b axis. The magnetic moment of the Co2+

ions in the distorted octahedral crystal field environment
is described well by a highly anisotropic pseudospin,
S = 1/2 [22]. The exchange interactions between the
pseudospins in SrCo2V2O8 can be modeled by the

Hamiltonian [23]

H = J
∑

i,j

[Sz
i,jS

z
i+1,j + ǫ(Sx

i,jS
x
i+1,j + Sy

i,jS
y
i+1,j)]

+
∑

i,j,n,m

J i,j
n,m[Sz

i,jS
z
n,m + ǫ(Sx

i,jS
x
n,m + Sy

i,jS
y
n,m)],(1)

where Sα
i,j is the alpha component of the ith spin of the

jth chain. J > 0 is AFM nearest neighbor intrachain
exchange interaction and J i,j

n,m is the interchain inter-

action between the ith spin of the jth chain and the
nth spin of the mth chain. The anisotropy parameter
0 < ǫ < 1, takes into account the XXZ-type anisotropy
interpolating between the Heisenberg (ǫ = 1) and Ising
(ǫ = 0) limits.

II. EXPERIMENTAL METHODS

Single crystals of SrCo2V2O8 were grown using the
floating-zone method [19]. Inelastic neutron scatter-
ing (INS) experiments were performed using the cold
neutron triple-axis-spectrometers FLEXX at Helmholtz-
Zentrum Berlin, Germany, and PANDA at the Heinz
Maier-Leibnitz Zentrum, Garching, Germany. Measure-
ments were performed on a large cylindrical single crys-
tal (weight ∼ 4.5 g, diameter ∼ 4 mm and length
∼ 40 mm) in the (h,0,l) reciprocal space plane. The
measurements were performed with fixed final wave vec-
tors of kf=1.3 Å−1, kf=1.57 Å−1 and kf=1.8 Å−1. For
these measurements, the sample was mounted on an alu-
minum sample holder and was cooled in cryostat. For
the FLEXX spectrometer, a double focusing monochro-
mator and a horizontally focusing analyzer were used.
For the PANDA spectrometer, both monochromator and
analyzer were double focusing. Higher order neutrons
were filtered out by using a velocity selector on the
FLEXX spectrometer and a cooled Beryllium filter on
the PANDA spectrometer. Measurements took place at
various temperatures between 0.8 K and 6.0 K.

III. EXPERIMENTAL RESULTS

A. High temperature phase T > TN

Since for SrCo2V2O8 TN/J ≪ 1, we expect there to
be a temperature regime TN . T ≪ J in which the
physics is essentially one-dimensional (1D) and approxi-
mately described by an anisotropic spin-1/2 Heisenberg
XXZ chain. Single crystal inelastic neutron scattering
measurements of SrCo2V2O8 at 6 K (> TN = 5.2 K)
along the (0, 0, l)-direction (chain direction) reveal a
gapped scattering continuum (Fig. 2a). For such wave
vectors the polarization factors are such that only the
components of the dynamical structure factor transverse
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to the direction of magnetic order contribute to the scat-
tering cross section. The gap value of ≃ 0.95 meV at the
(0,0,2) zone center, is quite small compared to the band-
width of the dispersion (≃ 14.5 meV) revealing that the
compound lies intermediate between the Ising (gap ∼ J ,
bandwidth ≃ ǫJ) and Heisenberg (gapless, bandwidth
≃ πJ) limits.

1. Spinon continuum at T > TN

The observed spinon continuum at T = 6 K (≪ J) is
in good agreement with the predictions for the transverse
dynamical structure factor of the integrable Heisenberg
XXZ chain at zero temperature [24]. The lower boundary
of the two-spinon continuum as a function of reduced
momentum transfer 0 ≤ Q < π along the chain is given
by

ωl(Q) =











ω−(Q) for 0 ≤ Q < Qκ
2I
1+κ sin(Q) for Qκ < Q < π/2

ω1sp(Q) for π/2 < Q < π

. (2)

and the upper boundary is

ωu(Q) =

{

ω1sp(Q) 0 < Q < Qǫ

ω−(Q) Qǫ < Q < π

Here

ω±(Q) =
2I

1 + κ

√

1 + κ2 ± 2κ cos(Q) ,

ω1sp(Q) = Ik′ + I
√

1− (1 − k′2) cos2(Q) , (3)

where κ = cos(Qκ) = 1−k
′

1+k′ , I =

JK(
√
1− k′2)

√
1− ǫ2/π, K(k) is the complete el-

liptic integral of the first kind and the parameter k′ is
given by

K(k′)

K
(√

1− k′2
) =

1

π
arccosh

(

ǫ−1
)

. (4)

The specific value Qǫ is obtained from the solution of a
quartic equation [24].
For SrCo2V2O8, Q can be written in terms of the

crystallographic wavevector transfer Q′ as Q = Q′
c/4 =

2πl/4, where Q′
c is the wave vector transfer in terms of

the c-lattice parameter of SrCo2V2O8. The factor of four
arises from the four equivalent Co2+ ions per unit cell
along the chain direction (c-axis). Fitting the experi-
mental continuum boundaries of SrCo2V2O8 to the above
expressions yields the values of J ≈ 7.0 ± 0.2 meV and
ǫ ≈ 0.56 ± 0.02. The fitted continuum boundaries are
represented by the solid black lines plotted over the data
in Fig. 2(a).
Ref. 24 also provides the theoretical expression for the

transverse structure factor of the 2-spinon continuum.
Using the fitted values of J and ǫ for SrCo2V2O8, the cal-
culated transverse structure factor is shown in Fig. 2(b)
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FIG. 2. (Color online) Inelastic neutron scattering from
SrCo2V2O8 measured in the 1D magnetic phase at 6 K
(T > TN ), compared to theory. All the measurements were
performed with kf=1.57 Å−1. (a) Magnetic excitation spec-
trum along the chain axis (0,0,l). The spectrum was obtained
by combining several energy scans performed at constant wave
vector (the measured data points are represented by the black
dots) and the colors indicate the size of the neutron scattering
cross-section. The solid black lines are the fitted boundaries
of the 2-spinon continuum of the 1D S = 1/2 XXZ AFM cal-
culated from the Bethe Ansatz (Ref. 24) using J = 7.0 meV
and ǫ = 0.56. The dashes curve is the predicted Villain mode
dispersion given by Eq. 6 and the yellow circles give the po-
sitions of the weak peaks observed below the continuum in
the data. (b) The exact two-spinon contribution to the zero
temperature dynamical structure factor for the 1D S = 1/2
XXZ AFM spin-chain with J = 7.0 meV and ǫ = 0.56 [24]
convolved with the instrumental resolution and multiplied by
the form factor. (c) Energy scans at constant wave vectors of
(0,0,2), (0,0,2.25), (0.0.2.5), (0,0,2.75) and (0,0,3) measured
at 6 K. The arrows point to the observed peaks attributed
to the Villain mode. The solid lines through the data are the
theoretical intensities of the 1D S = 1/2 XXZ AFM spin-chain
convolved with the instrumental resolution and multiplied by
the form factor.
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and can be directly compared to the experimental data
in Fig. 2(a). Fig. 2(c) shows energy scans at several fixed
wave vectors from (0,0,2) to (0,0,3) which pass through
the lower edge of the continuum of SrCo2V2O8. The
lines through the data are the theoretical intensities con-
volved with the instrumental resolution. Good agree-
ment is achieved between experiment and theory except
at (0,0,2) where the effects of interchain coupling and
finite temperature which are not included in the calcula-
tion may alter the spectrum at lowest energies.

2. Villain mode

An interesting feature in the dynamical response of
spin chains is the existence of a finite temperature reso-
nance known as a Villain mode [25]. This “mode” was
first observed by neutron scattering in Ref. 26 and 27 and
is a fairly general feature of spin chain models [28, 29].
The Villain resonance in the XXZ chain has been investi-
gated theoretically by developing a perturbation theory
around the Ising limit [30]. A prediction of this theory
is that above a certain temperature, a narrow resonance
develops at an energy

ωV(Q) ≃ maxp|ω1sp(p)− ω1sp(p+Q)|. (5)

The resonance corresponds to transitions between ther-
mally occupied states and therefore disappears at zero
temperature. In our case, we expect to see a resonance
at low temperatures at

ωV(Q) ≈ 0.94J sin(Q). (6)

which follows a similar dispersion to that of the lower
boundary of the continuum but is shifted downward from
it by an energy similar to the energy gap ≃ 0.95 meV.
The predicted Villain mode is indicated in Fig. 2(a) by
the dashed black curve. As T = 6K which is still quite
low compared to the intrachain interaction (T/J ≈ 0.07),
we expect the temperature effects on the T = 0 two-
spinon continuum to be weak. Hence, the most notice-
able effect of temperature is the emergence of additional
peaks associated with the Villain mode in the T = 6 K
data just below the two-spinon continuum. A weak peak
is indeed visible in the (0,0,3) data at ≈ 6.8 meV and
in the (0,0,2.75) and (0,0,2.5) scans at ≈ 6.3 meV and
≈ 4.8 meV, respectively (see Fig. 2(c)). These peak
positions along with those obtained from other energy
scans (not shown) are represented by the yellow circles
in Fig. 2(a) and follow the predicted Villain mode dis-
persion given by the dashed black curve.

B. Low temperature phase T < TN

Below its Néel temperature TN = 5.2 K, SrCo2V2O8

develops long-range magnetic order where the Co2+ spins
order antiferromagnetically along the chains with their
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FIG. 3. (Color online) Neutron scattering data in the ordered
phase at T = 1.5 K. (a) Scattering intensity along the chain
direction at (1,0,l) measured with kf=1.8 Å−1. The different
colored lines delineate the boundaries of the independent and
overlapping spectra expected for uncoupled chains. (b) Scans
in energy at (1,0,2) for T = 1.5 K (< TN = 5.2 K) and
T = 6 K (> TN ) with kf=1.57 Å−1. The red curve is a
fit of Gaussian peaks to the data. The background is shown
by the black line. Inset: energies of the transverse bound
spinon mode excitations as a function of mode number. (c)-
(d) Energy scans at constant wave vectors (0,0,2) and (3,0,1)
with kf=1.57 Å−1. Only the T-mode is observed at (0,0,2),
while both T-mode and L-mode are seen at (3,0,1). The solid
red curves are fits of Gaussian peaks to the data. (e)-(g)
Fits of the observed bound state energies to a model of two
spinons interacting with an attractive interaction increasing
linearly with their separation, cf. III B 1. The energies of a
given series of modes (L or T) are plotted against the negative
zeros of the Airy function ζj . The solid red lines are the linear
fits to the data, demonstrating linear confinement. The fitted
values of E0 and α are given on the plots.

moments aligned parallel to the c-axis [19]. The dy-
namical structure factor well inside the ordered phase
at T = 1.5 K along the (1,0,l) direction is shown in
Fig. 3. Its gross features including the total bandwidth
and the energy gap are similar to those observed above
TN (Fig. 2(a)). The weak scattering at (1,0,3) is asso-
ciated with the fact that there are four equivalent screw
chains per unit cell each with four Co2+ ions per c-lattice
parameter. Neglecting interchain interactions this gives
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FIG. 4. (Color online) (a) Constant wave vector scans for
several reciprocal lattice points over the lowest pair of bound
spinon modes at ∼ 1.5 meV showing how the L-mode and
T-mode intensities vary with wave vector in the (h,0,l)-plane.
(b) Directions of the scattering wave vectors in the reciprocal
plane for the scans shown in (a). (c) Intensity ratio of the
L-mode to the T-mode as a function of [1 − (Q′

c/Q
′)2]/[2 −

(Q′
a/Q

′)2]. The red curve is a linear fit to the data.

rise to a total of four “copies” of the cross section for a
single chain, which are shifted with respect to one an-
other by reciprocal lattice units along the chain direction
(for details see Ref. 21 on the isostructural compound
SrNi2V2O8). For uncoupled chains we thus expect the
intensity to be of the form

I(Q′, ω) =

4
∑

l=1

Al(Q
′)I1D

(

4Q+
2π(l − 1)

c
, ω

)

(7)

As a result every reciprocal lattice point is an antiferro-
magnetic zone center for at least one of these copies, but
their overall intensities Al(Q

′) depend on the full momen-
tum transfer Q′ and can be very different. For (1,0,l) all
four independent contributions are present shifted con-
secutively by ∆Q′

c = 1 r.l.u. along the chain. Their
lower and upper boundaries are indicated by the differ-
ent colored lines in Fig. 3(a). For (0,0,l) only a single
contribution is visible, as observed in Fig. 2(a).
Careful inspection of the cross section at the anti-

ferromagnetic zone center, reveals that the continuum
observed at 6 K is transformed into a sequence of dis-
crete, resolution-limited excitations at 1.5 K. As shown
in Fig. 3(b) at wave vector transfer (1,0,2) nine peaks,
labelled E1-E9, are observable in the energy range ∼ 1.5-
5.5 meV. Since these discrete modes appear below the
ordering temperature, they must arise from the inter-
chain coupling. A detailed examination shows that each
of the sharp peaks at (1,0,2) in fact consists of two closely
spaced peaks with the higher energy peak being relatively
weaker. For the wave vector (0,0,2) a single series of
peaks is found (Fig. 3(c)), while at (3,0,1) both series of
peaks are visible with similar intensities (Fig. 3(d)).
We have investigated the nature of the two series of
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FIG. 5. (Color online) Constant wave vector scans at 1.5 K
for (a) (h, 0, 1) and (b) (h, 0, 2). The energy window covers
the lowest pair of bound-spinon modes and yields the disper-
sions perpendicular to the chain axis. The solid lines are fits
by sums of two Gaussians and allow us to extract the en-
ergies of the T- and L-modes. (c) The dispersion relations
perpendicular to the chain axis for the T-mode and L-mode
constructed from the extracted peak positions from (a) and
(b). The solid lines are the guides to the eye.

peaks in more detail at several AFM zone centers with
different wave vector components Q′

a and Q′
c (along the

a and c axes) respectively. The measurements were per-
formed over the lowest energy peaks around ∼ 1.5 meV,
see Fig. 4(a). The results indicate that when the wave
vector transfer is parallel to the chain direction, e.g.
(0,0,2), only one peak is present. If the a-component of
the wave vector transfer is non-vanishing a second peak
appears at higher energy. The relative intensity of the
higher energy peak increases with increasing Q′

a.

This intensity dependence provides important informa-
tion about the nature of the two series of peaks. Neutron
scattering is only sensitive to fluctuations perpendicular
to the wave vector transfer. The higher energy series of
modes that is absent for wave vector transfers parallel to
the c-axis but becomes visible when Q′

a 6= 0 must there-
fore be due to fluctuations along to the c-axis. We refer
to this series of modes as longitudinal modes (L-modes)
since they are due to fluctuations parallel to the ordered
spin direction. In contrast, the available evidence sug-
gests that the lower energy series of modes is associated
with fluctuations in the ab-plane. We will therefore refer
to these excitations as transverse modes (T-modes). The
bound modes in SrCo2V2O8 were observed previously us-
ing terahertz spectroscopy as described in Ref. 31. This
techniques allows the transverse modes to be measured
to very high resolution, but the longitudinal modes are
not accessible.
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It is clear from Fig. 4 that the energies of the modes
vary from one AFM zone center to another as a result of
the interchain interactions. In order to investigate these
interactions, the dispersions of the lowest energy pair
of bound modes were measured along Q′

a by perform-
ing a series of energy scans at the constant-wave vectors
(h, 0, 1) and (h, 0, 2) for various values of h (Figs. 5(a)
and 5(b)). Both the L-mode and T-mode disperse over a
narrow bandwidth of≤ 0.15 meV, the modes are in-phase
for l=2 but out-of-phase at l=1 (Fig. 5(c)). The disper-
sions are complex due to the many possible interchain
interactions allowed by the screw-chain crystal structure
(Fig. 1) that can reinforce or act against each other de-
pending on the reciprocal lattice points as found for the
isostructural compound SrNi2V2O8 [21]. To fully quan-
tify the strengths of the interchain interactions further
measurements are required.

1. Modeling the energies of the observed bound modes

As we will detail in section IV, the bound states ob-
served at low temperatures can be understood in terms
of confinement of spinon pairs. The physical picture is
that the interchain coupling induces a linearly confining
potential between the elementary spinon excitations of
the 1D chains. This was shown by Shiba in Ref. 32 in
the large anisotropy limit ǫ ≪ 1 of the model (1). In
this limit spinons can be thought of as antiferromagnetic
domain walls. As we will see in section IV the spinon con-
finement picture extends all the way up to the Heisenberg
limit ǫ = 1. This suggests that the bound mode energies
Ej at the AFM zone center can be approximately ex-
tracted from the 1D Schrödinger equation describing the
centre-of-mass motion of the spinon pairs

− ~
2

µ

d2ϕ

dx2
+ λ|x|ϕ = (E − 2E0)ϕ . (8)

Here µ is the reduced mass, E0 is the spinon gap in
absence of the confining potential, λ is the molecular field
at the Co2+ site produced by the interchain interactions,
and the interaction potential between the two spinons
is assumed to be a linear function of their separation
x. The Schrödinger equation (8) has been previously
applied successfully to describe aspects of confinement in
the transverse field Ising chain [14, 15, 33–35] and in real
materials [16, 18]. The solutions of Eq. (8) are given by
Airy functions [36] and the corresponding bound state
energies are

Ej = 2E0 + αζj j = 1, 2, 3, ...., (9)

where α = [λ2(~2/µ)]1/3 and the ζj ’s are the nega-
tive zeros of the Airy function. We use Eq. (9) as a
phenomenological expression for the bound state ener-
gies, and fit the two parameters E0 and α to our exper-
imental data for the longitudinal and transverse modes

separately. This gives excellent agreement with the ob-
served spectra in all cases see Fig. 3(e) to (g). The fit-
ted value of α is α = 0.22 ± 0.1 while the spinon gap
0.98 < 2E0 < 1.21 shows some variation between dif-
ferent AFM zone centers probably due to the interchain
coupling.
It should be noted that the bound modes have their

minimum at the reciprocal lattice points and disperse
along the chain direction as can be observed in Fig. 3(a).
The bound mode dispersion in the vicinity of the antifer-
romagnetic zone center is of the form

Ω
(a)
j (Q) ≈ E

(a)
j +

(Q − π)2

2m
(a)
j

, a = L, T, (10)

where Q is the reduced wave vector along the chain di-
rection (Q = Q′

c/4) and mj is the mass of the jth bound
state.

C. Temperature effects

In the simplest model the confining potential for
spinons is proportional to the magnitude of the ordered
moment and we therefore expect the bound modes to be
sensitive to temperature at T ≈ TN . The temperature-
dependence of the transverse and longitudinal bound
spinon modes at the reciprocal lattice points (0,0,2) and
(3,0,1) are shown in Fig. 6. As temperature approaches
TN from below these modes broaden, become weaker and
shift to lower energy. This shift is due to the weakening of
the confining molecular field from the neighboring chains
as the order moment value decreases with increasing tem-
perature.
Another feature in the data is a strong broad peak

centered around E = 0 [Fig. 6(b)]. It is visible at T ∼ TN

but disappears for T ≪ TN suggesting that it is due to
short-range order between the chains that sharpens into
magnetic Bragg peak position well below TN . We observe
that the peak is present at (3,0,1) but not at (0,0,2). The
likely origin of this difference is that at (0,0,2) we only
observe transverse correlations, while the peak is related
to (emerging) 3D order along the longitudinal direction.
In addition to these changes, a sharp peak appears at

(3,0,1) at the energy E ∼ 0.65 meV for T = 4 K and
shifts towards lower energy with increasing temperature.
No such temperature-induced peak is observed at (0,0,2),
confirming that this feature is associated with the longi-
tudinal structure factor. We attribute this peak to tran-
sitions between bound modes. At finite temperatures the
lowest energy bound mode will become thermally popu-
lated and transitions between it and the higher energy
bound modes are possible. Since the peak is observed in
the longitudinal structure factor it arises from a transi-
tion between longitudinal bound modes or between trans-
verse bound modes but not from a longitudinal to a trans-
verse bound mode or vice versa. The distinction should
be drawn between this feature which is a transition be-
tween thermally excited bound-spinon modes observed
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FIG. 6. (Color online) Energy scans at (a) (0,0,2) and (b)
(3,0,1), measured with kf=1.57 Å−1, for several temperatures
close to TN . Temperature induced peaks appear for (3,0,1)
and are indicated by arrows. The inset shows the energy of the
temperature induced peak as a function of temperature (green
circles). The energy difference between first two longitudinal
bound states is shown by the red squares.

close to but below TN and the Villain mode which arises
from transitions between thermally excited single spinon
states which are observed above TN .

If we denote the dispersion relation of the jth trans-

verse/longitudinal bound state by Ω
(a)
j (Q) (a = T, L),

transitions between them occur at energies

Ω
(a→b)
j,k (Q− P ) = |Ω(a)

j (Q)− Ω
(b)
j (P )| , a, b = T, L.

(11)

In the low temperature ordered phase Ω
(a)
j (Q) will be

π-periodic functions, so that the momentum transfer of
the transition (11) will be Q − P mod π. If we take
Q = P = π there will be transitions with momentum
transfer zero and π. Setting aside the issue which tran-
sitions will give non-vanishing contributions to the dy-
namical structure factor (which is 2π-periodic), we have
checked whether the energy differences between bound
modes at (3,0,1) are reflected in the energy of the tem-
perature induced peaks. The inset of Fig. 6(b) shows
the temperature-dependent energy of the thermally ex-
cited peak (green circles) which is in good agreement with
the energy difference between the first and second longi-
tudinal bound modes as a function of temperature (red
squares). The above interpretation of temperature effects
is supported by the theoretical analysis summarized in
section IVD 2.

IV. THEORY

As we have seen above, at T > TN the neutron scatter-
ing intensity is well described by a model of uncoupled
spin-1/2 Heisenberg XXZ chains. At low temperatures
interchain coupling effects are obviously important. In
the following we constrain our analysis to a simple mean-

field treatment of these interactions[32, 37–40]
∑

i,j,n,m

J i,j
n,m[Sz

i,jS
z
n,m + ǫ(Sx

i,jS
x
n,m + Sy

i,jS
y
n,m)]

−→
∑

i,j,n,m

J i,j
n,m

[

〈Sz
i,j〉Sz

n,m + Sz
i,j〈Sz

n,m〉
]

. (12)

Using the fact that there is Néel order at low temper-
atures this leads to a description in terms of decoupled
chains in a self-consistent staggered magnetic field

HMF = J

L
∑

j=1

Sz
j S

z
j+1 + ǫ

(

Sx
j S

x
j+1 + Sy

j S
y
j+1

)

−h
L
∑

j=1

(−1)jSz
j . (13)

The effective staggered field h is a function of J i,j
n,m and

temperature. We note that the Hamiltonian (13) has a
U(1) symmetry of rotations around the z-axis

[HMF, S
z] = 0. (14)

In the following we analyze the dynamical structure fac-
tor in the model (13) by several different methods in var-
ious parameter regimes.

A. Strong coupling expansion

A fairly comprehensive qualitative picture of the phys-
ical properties of the model (13) can be obtained by con-
sidering the strong anisotropy limit ǫ ≪ 1. This limit
is amenable to an analysis by the method of Ishimura
and Shiba [41] and has been previously considered by
Shiba [32]. As Ref. 32 only considered the transverse
component of the dynamical structure factor, we now
give a self-contained discussion of this approach and then
discuss the resulting picture for dynamical correlations.
We find it convenient to map (13) to a ferromagnet by ro-
tating the spin quantization axis on all odd sites around
the x-axis by 180 degrees

Sa
2j+1 = −1

2
τa2j+1 , a = y, z , Sx

2j+1 =
1

2
τx2j+1. (15)

Here ταj are Pauli matrices. In terms of the new spins we
have HMF = H0 +H ′ with

H0 = −J

4

∑

j

τzj τ
z
j+1 ,

H ′ =
Jǫ

2

∑

j

τ+j τ+j+1 + τ−j τ−j+1 −
h

2

∑

j

τzj , (16)

where τ± = τx±iτy

2 . The U(1) symmetry (14) gives rise
to the commutation relations

[HMF,
∑

j

(−1)jτzj ] = 0. (17)
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The zero temperature dynamical susceptibilities are
given by

χαβ(ω,Q) = − i

L

∫ ∞

0

dt
∑

j,l

eiωt+iQ(j−l)〈[ταl (t), τβj ]〉

= −〈GS|τβQ
1

ω +HMF − E0 + iη
τα−Q|GS〉

+ 〈GS|τα−Q

1

ω −HMF + E0 + iη
τβQ|GS〉, (18)

where η > 0 is infinitesimal, E0 is the ground state energy
and ταQ = 1√

L

∑

j e
iQjταj . The dynamical structure factor

of the antiferromagnetic spin chain (13) of interest is

Sxx
AFM(ω,Q) = Syy

AFM(ω,Q) = − 1

4π
Im χxx(ω,Q) ,

Szz
AFM(ω,Q) = − 1

4π
Im χzz(ω,Q+ π) . (19)

We will analyze (18) by carrying out a strong coupling
expansion in the limit ǫ, h ≪ J [41]. Our starting point
is the Ising part H0 of the mean field Hamiltonian. The
ground states of H0 are simply the saturated ferromag-
netic states | ↑〉 and | ↓〉 respectively. Their energies are

E
(0)
0 = −JL

4 . Spontaneous symmetry breaking selects e.g.
| ↑〉. The low-lying excitations are then 2-domain wall
states of the form ... ↑↑↑↓↓↓↑↑↑ ... We denote these by
|j, n〉 where j is the position of the first down spin and
j+n−1 the position of the last down spin. The energies

of these states are E
(0)
2 = −JL

4 + J. A convenient or-
thonormal basis of 2-domain wall states with momentum
Q is obtained by taking appropriate linear combinations

|Q,n〉 = 1√
L

∑

j

eiQj |j, n〉. (20)

The matrix elements of the Hamiltonian in these states
are

〈Q,m|H |Q,n〉 = Jǫ

2
(1 + e2iQ)

[

δm,n+2 + e−2iQδm,n−2

]

+

[

(

− J

4
− h

2

)

L+ J + hn

]

δn,m. (21)

Importantly, the only non-zero matrix elements in H oc-
cur between domain-wall states with both even or both
odd lengths. This is a consequence of the U(1) symmetry
(17) and expresses the fact that acting with H does not
change the staggered magnetization (or equivalently the
magnetization in the original Sα

j spin variables). Given
(21) it is a straightforward matter to numerically com-
pute the Green’s functions

G(j, k) = 〈Q, j| (ω −HMF + E0 + iη)
−1 |Q, k〉. (22)

1. Ground state in perturbation theory

The first order correction to the ground state is ob-
tained by standard perturbation theory

|GS〉 ≃ | ↑〉 − ǫ
√
L

2
|Q = 0, 2〉. (23)

This gives the following matrix elements of spin operators

〈Q,n|τxQ|GS〉 = (1− ǫ cos(Q)) δn,1 −
ǫ(1 + e2iQ)

2
δn,3 ,

〈Q,n|τzQ|GS〉 = ǫ(1 + eiQ)δn,2δQ,0 ,

〈GS|τzQ|GS〉 =
√
LδQ,0 . (24)

2. Dynamical Structure Factor

Substituting (24) into (18) then leads to the following
approximate expression for the dynamical susceptibilities
at ω > 0

χxx(ω,Q) ≃ G(1, 1) (1− ǫ cos(Q))
2
+G(3, 3)|ǫ cos(Q)|2

− G(1, 3) (1− ǫ cos(Q))
ǫ(1 + e2iQ)

2

− G(3, 1) (1− ǫ cos(Q))
ǫ(1 + e−2iQ)

2
χyy(ω,Q) = χxx(ω,Q+ π) ,

χzz(ω,Q) ≃ G(2, 2) |2ǫ cos(Q/2)|2 . (25)

We note that these are consistent with the U(1) symme-
try of rotations around the z-axis for the antiferromag-
netic model (13). It is now straightforward to compute
the dynamical structure factor (DSF) (19) numerically.
Results for momentum transfer π are shown in Figs. 7.
We see that the transverse DSF (Sxx

AFM(ω, π)) only
‘couples’ to half the bound states, while the longitudinal
DSF (Szz

AFM(ω, π)) is sensitive to the other half. This is
in perfect correspondence with the experimental observa-
tions. The selection rule that gives rise to this behaviour
is related to the conserved Sz quantum number (14). It
is clear from (21) that the Hamiltonian in the 2-domain
wall sector is block diagonal in a basis of domain wall
states of odd/even length. In terms of the original spins
even/odd length domain walls correspond to even/odd
values of the conserved Sz quantum number (assuming
the lattice length to be divisible by 4). This implies that
there is one sequence of bound states with Sz = 0, and a
second with Sz = ±1. The first is visible in the longitudi-
nal structure factor Szz

AFM, while the second contributes
only to Sxx

AFM. In the strong anisotropy limit we therefore
have the simple cartoon picture for the physical nature
of the bound states shown in Fig. 8.

3. Gap as a function of field

The position of the first peak at Q = π, E
(T )
1 , gives the

excitation gap. Based on the relation of our problem to
a Schrödinger equation with linear potential we expect

E
(T )
1 = a0 + a1h

2

3 . (26)

In Fig. 9 we show the results obtained in our strong cou-
pling expansion and a fit to (26), which is seen to give a
very good account of the data [see Fig. 10].
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FIG. 7. (Color online) Transverse DSF Sxx
AFM(ω,π) (solid blue

line) and longitudinal DSF Szz
AFM(ω,π) (dashed red line) for

(a) ǫ = 0.2 and h = 0.05J , and (b) ǫ = 0.2 and h = 0.025J .
The broadening has been chosen as η = J/80 in order to make
the delta-function peaks visible.

B. Field Theory in the vicinity of the isotropic

point ǫ = 1

The physical picture obtained in the large anisotropy
limit ǫ ≪ 1 remains valid in the entire regime 0 < ǫ < 1.
To see this we consider the limit of weak anisotropy ǫ ≈ 1,
where the mean-field Hamiltonian (13) can be written in
the form

Hlatt = J
∑

j

Sj · Sj+1 + δ
∑

j

Sz
j S

z
j+1 − h

∑

j

(−1)jSz
j

(27)
where δ ≈ J(1− ǫ). In the parameter regime h ≪ δ ≪ J
this model can be bosonized following e.g. [42, 43], which
leads to a two-frequency sine-Gordon model

H =
v

2

∫

dx
[

(

∂xΦ
)2

+
(

∂xΘ
)2
]

+

∫

dx
[

λ cos
√
8πΦ(x) + µ sin

√
2πΦ(x)

]

, (28)

where λ ∝ δ and µ ∝ h. The model (28) in the rele-
vant parameter regime has been studied previously by a
number of authors [34, 44, 45]. A fruitful line of attack
is to start with H for µ = 0, and consider the µ-term as
a perturbation. The minima of the potential for µ = 0

 

J

J

J

J

J

Ground state

1st Longitudinal bound mode L1

2nd Longitudinal bound mode L2

2nd transverse bound mode T2

3rd transverse bound mode T3

J

1st transverse bound mode T1

FIG. 8. (Color online) Cartoon picture of the spin excita-
tions for ǫ ≪ 1. (a) Lowest energy configuration showing
antiferromagnetic spin alignment. (b) Flipping one spin (red
arrow) creates two ferromagnetic domain walls (blue stars).
At T > TN these “spinons” can propagate independently and
are observed in the INS data as a continuum. At T < TN the
domain walls are confined by the molecular field due to the
ordering of the neighboring chains: the energy cost increases
linearly with the number of reversed spins (red arrows), which
leads to the hierarchy of bound modes observed in the INS
data. Domain walls separated by an even (odd) number of
flipped spins have Sz = 0 (Sz = 1) and are observed in the
longitudinal (transverse) structure factor.

0.00 0.01 0.02 0.03 0.04

0.60

0.65

0.70

0.75

0.80

0.85

0.90

h/J

E
1
/J

FIG. 9. (Color online) Gap between the ground state and
the lowest excitation at Q = π as a function of the staggered
field h for ǫ = 0.2. Dots are results of the strong coupling
expansion while the solid line is a fit to equation (26).

and λ > 0 occur at

Φ(x) = (2n+ 1)

√

π

8
, n ∈ Z. (29)

The solutions to the classical equations of motion are
solitons and anti-solitons. Solitons interpolate between
neighbouring vacua, e.g.

Φ(x → ±∞) = ∓
√

π

8
, (30)
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while antisolitons have the opposite asymptotics

Φ(x → ±∞) = ±
√

π

8
. (31)

At the quantum level solitons and antisolitons turn into
elementary excitations of the sine-Gordon model.

1. Soliton-antisoliton states

Following [44, 45] we start with the soliton-antisoliton
sector. We take the positions of the soliton and antisoli-
ton to be x1 and x2 respectively and denote the classical
energy for µ = 0 by 2∆s. When µ > 0, soliton-antisoliton
states acquire an extra contribution to the energy

2µ|x1 − x2|. (32)

In a non-relativistic approximation we then obtain a
single-particle Schrödinger equation for the relative mo-
tion (x = x2 − x1) with Hamiltonian

Hrel = − 1

Ms

d2

dx2
+ 2µ|x| . (33)

Here Ms = ∆s/v
2 and the reduced mass is MsMs̄

Ms+Ms̄
= Ms

2 .
This Schrödinger equation can be solved exactly in terms
of Airy functions [36], and the corresponding eigenstates
describe the confinement on solitons and antisolitons.
The bound state energies follow from the boundary con-
ditions imposed on the wave function. If we require the
wave function to be antisymmetric and therefore vanish
at zero, we obtain

E(L)
n = 2Ms +

(

4µ2

Ms

)
1

3

ξn , Ai(−ξn) = 0. (34)

Symmetric wave functions would instead lead to a spec-
trum of the form

E(L)
n = 2Ms +

(

4µ2

Ms

)
1

3

ζn , Ai′(−ζn) = 0. (35)

As soliton-antisoliton states have the same Sz value as
the ground state, the bound states (34) will be visible in
the longitudinal structure factor.

2. Soliton-soliton states

The considerations for two-soliton states are analo-
gous. Classically the parameter µ characterizing the
confining potential (32) is the same as in the soliton-
antisoliton sector, but we don’t expect this to be true at
the quantum level. We account for this by a different
strength µ̄ of the potential, which then gives a sequence
of energies

E(T )
n = 2Ms +

(

4µ̄2

Ms

)
1

3

ξn , Ai(−ξn) = 0. (36)

Here we have taken the wave function to be antisym-
metric because the zero-momentum limit of the soliton-
soliton scattering matrix is −1. As soliton-soliton states
have Sz = 1, the bound states (36) will be visible in the
transverse structure factor.

3. Dynamical Structure Factor at Q ≈ π/a0

In the field theory limit the staggered magnetizations
are given by

n(t, x) =





cos
(√

2πΘ(t, x)
)

sin
(√

2πΘ(t, x)
)

sin
(√

2πΦ(t, x)
)



 . (37)

Close to the antiferromagnetic wave number π/a0 (where
a0 is the lattice spacing) the components of the DSF are
thus given by

Sαα
(

ω,
π

a0
+ q

)

∝
∫ ∞

−∞
dtdx eiωt−iqx〈nα(t, x)nα(0, 0)〉.

(38)
In the longitudinal structure factor we therefore see
confined soliton-antisoliton states, while the transverse
components are sensitive to confined soliton-soliton and
antisoliton-antisoliton states. Following Appendix B of
[45] we can derive expressions for the bound state con-
tributions to the various correlators in leading order in
perturbation theory in µ in the limit of very weak con-
finement

〈nz(τ, x)
)

nz(0, 0)
)

〉 ∝
Nb
∑

n=1

(

E
(L)
n+1 − E(L)

n

)

ρ
(

E(L)
n

)

×K0(E
(L)
n |x2 + v2τ2|), (39)

where

ρ(E) =
2f

(

arccosh(E/2Ms)
)

π2
√

E2 − 4M2
s

. (40)

The function f(θ) is related to a particular two-particle
form factor

f(θ) =
∣

∣

∣〈0|nz(0, 0)|θ1, θ2〉ss̄
∣

∣

∣

2
∣

∣

∣

∣

∣

θ1−θ2=θ

= C
sinh2(θ)

sinh2(3θ/2)

× exp

[

−2

∫ ∞

0

dx

x

[coshx cos
(

xθ
π

)

− 1] cosh
(

x
6

)

cosh
(

x
2

)

sinhx

]

. (41)

A similar analysis can in principle also be carried out on
the level of the spin chain itself. The strengths of the con-
fining potentials for spinon-antispinon and spinon-spinon
two-particle states should be extracted from the known
4-particle form factor.
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FIG. 10. (Color online) Energy gap E1 of the first bound state
as a function of the magnetic field for ǫ = 0.5 and ǫ = 0.2.
The lines are fits to the functional form (26), where the zero
field gap has been computed from the exact solution and a1 =
2.699 and a1 = 0.6242 for ǫ = 0.5 and ǫ = 0.2 respectively.
The finite-size effects between system sizes L = 32 and L =
128 are already too small to resolve graphically in most cases.

C. DMRG Results

While the strong coupling expansion and field theory
analysis provide a good qualitative picture of the dynam-
ics, they do not apply quantitatively to the experimen-
tally relevant regime ǫ ≈ 0.56. In order to overcome this
shortcoming we have carried out numerical DMRG [46–
48] calculations with the SyTen tensor toolkit, based on
the Hamiltonian (13). We first determine the gap of the
lowest bound state in the Sz = 1 sector as the difference
between the lowest energies of the Sz = 0 and Sz = 1
sectors. This computation is extremely stable, even near
criticality at small values of the field h and with periodic
boundary conditions. Finite-size effects can also be en-
tirely removed by choosing sufficiently large system sizes.
We are not able to determine the gaps of higher bound
states in this way as this would require working at a fixed
momentum. Fig. 10 gives the resulting values for the gap
and a fit to the small-h prediction (26). We see that al-
ready for system sizes L = 32 the gap value is essentially
converged and is in excellent agreement with the theo-
retical predictions for the scaling (26).
Second, we can calculate the ground state on a long

chain, apply an excitation in the middle of the chain
and then use Matrix Product State-based Krylov time
evolution[49] with matrix re-orthogonalization to evalu-
ate the dynamical structure factors in the time-space do-
main. The Fourier transformation into momentum space
is unproblematic. However, we are only able to evolve up
to a time tmaxJ ≈ 80 for ǫ = 0.2. This limitation is a con-
sequence of the entanglement growth during time evolu-
tion and the subsequent exponential increase in computa-
tional effort. This limit necessitates an articial damping

factor exp
(

−η t
tmax

)

to be introduced during the Fourier

transform into frequency space. For ǫ = 0.2, η ≈ 1 suf-

fices and it is already possible to distinguish the physical
peaks from the spectral leakage introduced by the trans-
formation. For ǫ = 0.5, only slightly shorter time-scales
tmaxJ ≈ 50 are achievable. Sufficient damping to remove
spectral leakage then also removes the signal. To circum-
vent this problem, we use numerical extrapolation prior
to the Fourier transformation to extend the data in time
to very large t′maxJ ≈ 1000. We can then introduce a
very small damping η = 1/700 during the Fourier trans-
formation and still remove all spectral leakage.
In Figs 11 we show results for the dynamical structure

factor at momentum Q = π on a system of L = 128
sites with h = 0.05J and two values of the anisotropy
ǫ. In both cases we find two sequences of bound states
associated with the transverse and longitudinal correla-
tions respectively. The positions of the first peak in the
transverse sector is in good agreement with Fig. 10.

FIG. 11. (Color online) Transverse (solid blue line) and lon-
gitudinal (dashed red line) dynamical structure factors calcu-
lated using MPS-Krylov at (a) h = 0.05J , ǫ = 0.2 and (b)
h = 0.05J , ǫ = 0.5. For ǫ = 0.2. The first peak for ǫ=0.2
and 0.5 lie at ω = 0.87J and 0.56J , respectively, which are in
good agreement with the value E1(h = 0.05J) = 0.87J and
0.54J , respectively, extracted from Fig. 10. Some spurious
oscillations appear in (a) is spite of the damping employed in
the Fourier transformation. In (b), as a result of the numer-
ical extrapolation procedure employed to deal with the late
time regime, no spurious oscillations are visible.
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D. Tangent-space MPS methods

As we have explained in the previous section, target-
ing higher bound states variationally requires the abil-
ity to work within a fixed momentum sector. This is
made possible by using tangent-space methods [50] for
matrix product states (MPS) that work directly in the
thermodynamic limit. In particular, starting from a
translationally-invariant MPS ground state on an infi-
nite chain, we can apply the MPS quasiparticle ansatz
[51] to target the elementary excitations corresponding
to isolated branches in the spectrum. This ansatz can
be read as the MPS version of the Feynman-Bijl ansatz
and single-mode approximation, but improves on these
approaches in using the virtual degrees of freedom of the
MPS to build an excitation on top of the ground state.
As the ansatz explicitly contains a fixed momentum, it
allows to systematically capture the wave functions of all
quasiparticle excitations – the ones that contribute a δ
peak in the DSF – within a certain momentum sector.
In order to capture continuous bands in the spectrum,
multi-particle excitations should be considered [52, 53].
Since the quasiparticle ansatz yields accurate variational
expressions for the wave functions of the excited states,
we can compute the energies and spectral weights for all
states contributing to the DSF.

As it works directly in the momentum-energy plane,
and does not suffer from finite-size effects, this method
has access to the dynamical structure factor with perfect
resolution. The only source of error is the variational na-
ture of the approach, but the approximation can be sys-
tematically improved by growing the bond dimension of
the MPS ground state. As the ansatz effectively exploits
the correlations in the ground state to build an excita-
tion, it can treat generic strongly-correlated spin chains
with isolated branches in the spectrum to very high pre-
cision. An assessment of the accuracy of the variational
wave function for a given excited state is provided by the
variance 〈H2〉 − 〈H〉2 of its energy, which can be evalu-
ated exactly [53].

At small values of the magnetic field h, we have
a large number of stable bound states that live on a
strongly-correlated background. Whereas time-domain
approaches are necessarily limited in resolving the differ-
ent modes, the quasiparticle ansatz is ideally suited for
capturing all stable bound states with perfect resolution.
Targeting the unstable bound states in the continuous
bands would require a multi-particle ansatz [52], but this
has not proven to be necessary here. In order to compare
with the experimental data, we have determined the dy-
namical structure factor by this method for several values
of the anisotropy ǫ and the staggered magnetic field h.
An additional shift of the energies has been introduced,
corresponding to the three-dimensional dispersion of the
modes. The best agreement with the experimental data
is found for ǫ = 0.56 and h = 0.00643J , and the corre-
sponding structure factors are shown in Fig. 12.

FIG. 12. (Color online) Transverse (solid blue lone) and lon-
gitudinal (dashed red line) structure factors for J = 7meV,
ǫ = 0.56 and h = 0.00643J . A Lorentzian broadening with
width η = J/80 has been introduced to make the delta-
function peaks visible.

FIG. 13. (Color online) Transverse (blue lines) and longi-
tudinal (red lines) structure factors for J = 7meV, ǫ = 0.1
and h = 0.025J . The results of the MPS quasiparticle ansatz
(solid lines) and the strong coupling approach (dashed lines)
are in good agreement.

1. Comparison with strong-coupling expansion and DMRG
results

It is useful to compare the results obtained by our
different methods. We first consider a fairly strong
anisotropy ǫ = 0.1 and weak field h = 0.025J . Results
for the quasiparticle ansatz (solid line) and the strong
coupling approach (dashed line) are shown in Fig. 13.
The agreement is seen to be good and any discrepancies
can be attributed to the leading O(ǫ2) corrections to the
strong coupling result.

We have also compared the results of the quasi-particle
ansatz to DMRG for ǫ = 0.5, cf. Fig. 14. The two meth-
ods are seen to agree very well. The remaining differences
arise from the fact that the tangent-space MPS approach
has been restricted to the calculation of the five lowest
energy bound modes (in principle higher bound modes
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could be analyzed as well).
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FIG. 14. (Color online) Transverse (blues lines, main figure)
and longitudinal (red lines, inset) structure factors for J =
7meV, ǫ = 0.5 and h = 0.05J calculated by DMRG (solid
lines) and tangent-space MPS methods (dashed lines). For
the chosen parameter set the agreement is seen to be excellent.

2. Temperature effects

So far our theoretical analysis has been restricted to
zero temperature. In order to access the T > 0 regime
we now combine the tangent-space MPS method with

a low temperature linked cluster expansion of the dy-
namical susceptibility [28, 29, 54, 55]. The basic idea is
to treat the low-temperature regime as a gas of bound
states that scatter purely elastically. This is expected to
be a good approximation as long as the temperature is
small compared to the minimal gap ∆min of the lowest
energy bound state, i.e.

exp

(

−∆min

kBT

)

≪ 1. (42)

The main temperature effects are a broadening of the
T = 0 coherent single-particle peaks and the emergence
of additional peaks in the dynamical structure factor,
which correspond to transitions between thermally popu-
lated single-particle excitations. The first effect requires
an analysis of matrix elements between single particle
and two particle excitations. This is a non-trivial task
beyond the scope of the present work. At sufficiently low
frequencies ω < ∆min the second effect is easier to cap-
ture. Let us denote the single-particle excitations of the
ath bound state with momentum p by

|p〉a , p ∈ [0, π], (43)

and the corresponding dispersion relations by ǫa(p).
Then the leading contributions to the dynamical struc-
ture factor at low temperatures and frequencies are

Sαα(ω,Q)

∣

∣

∣

∣

∣

0<ω,T<∆min

≈ 1

1− e−ω/kBT

∑

a,b

∫ π

0

dp

π

[

e−ǫa(p)/kBT − e−ǫb(p+Q)/kBT
]

δ
(

ω + ǫa(p)− ǫb(p+Q)
)

Mab(p,Q) ,

Mab(p,Q) = |a〈p|Sα
0 |p+Q〉b|2 + |a〈p|Sα

1 |p+Q〉b|2 + 2Re
[

e−iQ
a〈p|Sα

1 |p+ q〉bb〈p+Q|Sα
0 |p〉a

]

. (44)

In Fig. 15 we show the contributions (44) due to transi-
tions between thermally excited bound modes for the ex-
perimentally relevant parameter set ǫ = 0.56, J = 7meV,
h = 0.00614J and T = 4K. Transitions occurring at
very low frequencies have not been taken into account,
because the low energy regime is dominated by the broad-
ened Bragg peak. For comparison the longitudinal (red
dashed line) and transverse (solid blue line) components
of the dynamical structure factor at T = 0 are shown as
well. A finite temperature resonance in the longitudinal
structure factor at a frequency ω ≈ 0.1J is clearly visible,
while contributions to the transverse structure factor are
very small.

V. THEORY VS EXPERIMENT

We are now in a position to compare theoretical and
experimental results. The first task is to determine ap-

propriate parameters for applying the effective 1D model
(13) to SrCo2V2O8. Estimates for the exchange J and
anisotropy ǫ were obtained in section III A by compar-
ing the data collected for T > TN to the zero tempera-
ture transverse dynamical structure factor for (13) with
h = 0. Such a comparison is appropriate because T ≪ J
and gives values of J ≈ 7.0 meV and ǫ = 0.56. The re-
maining parameter is the strength h of the effective stag-
gered field. As this arises from a mean-field decoupling of
the interchain interactions, it is temperature dependent.
As shown in section IV, h can be fixed by computing
the energies of the first few bound states and compar-
ing them to the measured peak positions. One caveat is
that the gap of the lowest bound state is not necessarily
well described by the purely 1D model (13). Indeed, in
simple quasi-1D systems of weakly coupled chains cor-
rections to the simple mean-field approximation due to
the interchain couplings can be taken into account by a
random-phase approximation, which gives the following
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FIG. 15. Dynamical structure factor calculated with tangent-
space MPS methods for ǫ = 0.56, J = 7meV, h = 0.00614J .
Finite temperature resonances given by (44) have been de-
termined at temperature T = 4K and are plotted together
with the T = 0 results for the higher energy bound modes to
allow for a comparison of the relative intensities. Longitudi-
nal (transverse) components are plotted with dashed (solid)
lines. A Lorentzian broadening with width η = J/80 has been
introduced to make the delta-function peaks visible.

expression for the dynamical susceptibility

χ3D(ω,q) =
1

χ−1
1D(ω, q)− Jint(q)

. (45)

Here Jint(q) is the Fourier transform of the interchain
coupling, and we have assumed that we are dealing with
a system of equivalent chains. It is clear from (45) that
at a given wave vector the singularities of χ3D(ω,q) are
shifted in energy by a constant compared to those of
χ1D(ω, q). The situation in SrCo2V2O8 is much more
complicated, because there are several counter rotating
screw chains per unit cell. A refined analysis of the inter-
chain coupling by a generalization of (45) is possible[56]
but beyond the scope of this work.
Keeping this discussion in mind, we first try to obtain

an optimal description of the energy splittings between
the observed coherent modes by a pure one dimensional
model. At temperature T = 1.5 K we can reproduce the
energy differences of the first few peaks with a value of
h ≈ 0.00643J . The resulting comparison between the
transverse modes calculated by this mean-field model us-
ing the tangent-space MPS method (13) and the experi-
mental data at Q = (0, 0, 2) is shown in Fig. 16. We see
that the mean-field model reproduces the experimental
results very well up to an overall shift of about 0.122meV
in energy. Since the gap is very sensitive to corrections
to the mean-field model, as can be seen from the RPA
expression (45), such a shift is not surprising. Further-
more in the experimental data the interchain couplings
give rise to a dispersion of the gap with a comparable
bandwidth of ∼ 0.15 meV (see Fig. 5).
The dynamical structure factor calculated in the mean-

field model by the tangent-space MPS method was com-
pared to the data at several reciprocal lattice points
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FIG. 16. (Color online) Transverse dynamical structure fac-
tor calculated with tangent-space MPS methods for ǫ = 0.56,
J = 7 meV, h = 0.00614J (solid line) compared to experi-
mental data for T = 1.5 K and wave vector transfer (0, 0, 2).
An artificial Gaussian broadening with width 0.26 meV was
introduced to mimic the experimental resolution. The MPS
results were rescaled in order to match the amplitude of the
first peak. The MPS computation was restricted to determin-
ing the first four bound modes only.

as shown in Fig. 17. Both the transverse and lon-
gitudinal structure factors are plotted and the effect
of interchain coupling is taken into account by intro-
ducing a wavevector-dependent energy shift. At each
wavevector the intensity of the two structure factors are
weighted by their respective polarization factors due to
the component of their magnetization perpendicular to
the wavevector transfer (see section III B) as well as by
the square of their g-factors [57]. An overall scaling fac-
tor is also introduced to match the theoretical intensity
to the data and the theoretical peaks are convolved by
a Gaussian to model the experimental resolution. The
solid black line gives the sum of the two structure fac-
tors as well as a linear background and represents the
expected neutron scattering intensities. Considering the
highly complex counter-rotating screw chain structure
and the many possible interchain interactions that are
neglected in this calculation, the agreement between ex-
periment and theory is remarkably good.
The finite temperature results of section IVD2 are also

in good agreement with the experimental observations
[Fig. 18]. We saw that at a temperature of 4 K our
one dimensional model displays a finite temperature res-
onance in the longitudinal structure factor at an energy
of about 0.7 meV. This is in good agreement with the ex-
perimental observation of a resonance in the longitudinal
structure factor at ω ≈ 0.65 meV [Fig. 6(b)].

VI. DISCUSSION

We have presented results of inelastic neutron scatter-
ing experiments on the quasi-one dimensional spin-1/2
Heisenberg magnet SrCo2V2O8. Above the Néel temper-
ature TN ≈ 5.2K, the neutron scattering cross section
is dominated by a scattering continuum that is well de-
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FIG. 17. (Color online) The transverse (blue line) and lon-
gitudinal (red line) dynamical structure factors calculated by
the tangent-space MPS method for ǫ = 0.56, J = 7meV,
h = 0.00614J compared to the experimental data (filled cir-
cles) for T = 1.5K measured at wavevector transfers (a)
(0,0,2), (b) (1,0,2) and (c) (3,0,1). At each wavevector the
intensity of the two structure factors are weighted by their
respective polarization factors and by the square of their g-
factors [57] giving a weighting ratio of longitudinal to trans-
verse modes of 0, 0.216, 2.16 for (0,0,2), (1,0,2) and (3,0,1)
respectively; an overall scale factor is also included to match
the data. To account for the effects of interchain coupling a
wavevector-dependent energy shift is introduced with values
-0.13, -0.21, -0.25 meV for the three wavector respectively.
Finally the theoretical peaks are convolved by Gaussians of
widths 0.26, 0.27 and 0.22meV to model the experimental
resolution. The two structure factors are summed together
along with a linear background (dashed black line) to give
the expected total scattering (solid black line).

scribed by a spin-1/2 Heisenberg XXZ chain with antifer-
romagnetic exchange J ≈ 7.0 ± 0.2 meV and anisotropy
parameter ǫ ≈ 0.56 ± 0.02. The scattering continuum is
formed by fractionalized Sz = 1

2 spinon excitations. At
temperatures below TN the structure factor exhibits two
sequences of resolution-limited dispersing peaks that are
associated with fluctuations along (L-modes) and per-
pendicular (T-modes) to the ordered magnetic moment
respectively.

The origin of these coherent modes can be understood
by a one dimensional model [Eq. (13)], in which a (tem-
perature dependent) staggered magnetic field is gener-
ated in the ordered phase through a mean-field decou-
pling of the interchain interactions. The model can be
studied analytically for both strong and weak exchange
anisotropies and in both limits the effect of the stag-
gered field is to confine the spinon excitations into two
sequences of bound states. At intermediate values of
the exchange anisotropy we have used DMRG and MPS
methods to obtain quantitative results for the dynamical
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FIG. 18. (Color online) A comparison of the dynamical struc-
ture factors for the transverse (blue line) and longitudinal (red
line) and the temperature induced resonance (green line) cal-
culated by the tangent-space MPS method (Fig. 15) with the
experimental data (open circles) at T = 4 K and measured at
wavevector transfers (3,0,1). The temperature induced res-
onance (green line) given by (44) has been determined at
temperature T = 4K, whereas, the dynamical structure fac-
tors for the T-mode and L-mode are calculated at T =0 K.
The relative intensities for the T-mode, L-mode, and temper-
ature induced resonance peak are taken to be 1, 2.16 (same as
Fig.17), and 0.325, respectively. An overall scale factor is also
included to match the data. For L-mode and T-mode energy
shifts of -0.31 and -0.25 meV, respectively, are introduced to
account for the effects of interchain coupling. Finally the the-
oretical peaks are convolved by Gaussians of widths 0.24 for
the temperature induced peak and 0.22 meV for the L- and
T-modes to model the experimental resolution. The all struc-
ture factors are summed together along with a background
(dashed black line) to give the expected total scattering (solid
black line). The background was calculated by a combination
of two functions; a linear and an exponential decay for which
the coefficients are derived from the fitting of the 4.75 K ex-
perimental data for wavevector transfer (0,0,2) [Fig. 6(a)].

structure factor. It turns out that the experimentally
relevant parameter regime cannot be reached even by
state-of-the-art DMRG methods. Due to entanglement
growth, the time scale by which dynamical correlation
functions that can be computed by DMRG is restricted,
which in turn imposes limitations on the achievable en-
ergy resolution. We therefore have employed a recently
developed tangent-space MPS method, which is based
on constructing MPS representations for excited states.
Application of this method allows the computation of the
dynamical structure factor, which is found to be in good
agreement with experiment.

Our work establishes SrCo2V2O8 as a beautiful
paradigm for spinon confinement in a quasi-one di-
mensional quantum magnet. There are a number of
interesting questions that deserve further investigation.
On the theoretical side a more involved investigation of
the dynamical structure factor at finite temperatures
would improve our understanding of the thermally
induced peaks observed in the data both below TN

(transitions between bound modes) and above TN (the
villain mode). On the experimental side, the precise form
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of the interchain interactions needs to be clarified by
extensive measurements of the bound mode dispersion
relations perpendicular to the chain direction at lowest
temperatures. We have seen that it is necessary to
account for these interations beyond a simple mean-field
decoupling in order to describe the data. As the crystal
structure is rather complex this goes beyond the scope
of the present work. Finally, it would be interesting
to analyze the effects of an applied uniform magnetic
field. Terahertz spectroscopy measurements reveal the
emergence of novel excitations as a function of both
transverse and longitudinal magnetic field [57, 58] which
could be investigated using a combination of neutron

scattering and the theoretical methods described here.
We hope to return to these questions in future work.
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spinon transverse structure factor of the gapped Heisen-
berg antiferromagnetic chain, J. Stat. Mech. Theor. Exp.
2008 P08006 (2008).

[25] J. Villain, Propagative spin relaxation in the Ising-
like antiferromagnetic linear chain , Physica B+C 79,
1 (1975).

[26] S. E. Nagler, W. J. L. Buyers, R. L. Armstrong, and
B. Briat, Propagating Domain Walls in CsCoBr3, Phys.
Rev. Lett. 49, 590 (1982).



17

[27] S. E. Nagler, W. J. L. Buyers, R. L. Armstrong, and
B. Briat, Solitons in the one-dimensional antiferromag-
net CsCoBr3, Phys. Rev. B 28, 3873 (1983).

[28] W. D. Goetze, U. Karahasanovic, and F. H. L. Essler,
Low-temperature dynamical structure factor of the two-
leg spin-12 Heisenberg ladder, Phys. Rev. B 82, 104417
(2010).

[29] A. J. A. James, F. H. L. Essler, and R. M. Konik, Finite-
temperature dynamical structure factor of alternating
Heisenberg chains, Phys. Rev. B 78, 094411 (2008).

[30] A. J. A. James, W. D. Goetze, and F. H. L. Essler. Finite-
temperature dynamical structure factor of the Heisenberg-
Ising chain, Phys. Rev. B 79, 214408 (2009).

[31] Z. Wang, M. Schmidt, A. K. Bera, A. T. M. N. Islam,
B. Lake, A. Loidl and J. Deisenhofer, Spinon confine-
ment in the one-dimensional Ising-like antiferromagnet
SrCo2V2O8, Phys. Rev. B 91, 140404 (2015).

[32] H. Shiba. Quantization of Magnetic Excitation Con-
tinuum Due to Interchain Coupling in Nearly One-
Dimensional Ising-Like Antiferromagnets, Prog. Theor.
Phys. 64, 466 (1980).

[33] P. Fonseca and A. B. Zamolodchikov, Ising Spectroscopy
I: Mesons at T ¡ Tc, arXiv:hep-th/0612304 (2006).

[34] M. J. Bhaseen and A. M. Tsvelik, , in From Fields to
Strings: Circumnavigating Theoretical Physics, ed. M.
Shifman, A. Vainshtein and J. Wheater (World Scientific,
Singapore, 2005); cond-mat/0409602.

[35] S B Rutkevich, On the weak confinement of kinks in
the one-dimensional quantum ferromagnet CoNb2O6, J.
Stat. Mech. Theor. Exp. 2010, P07015, (2010).

[36] L. D. Landau and E. M. Lifshitz, Quantum Mechanics
3rd edition, Butterworth-Heinemann, Oxford 1999.

[37] H. J. Schulz, Dynamics of Coupled Quantum Spin
Chains, Phys. Rev. Lett. 77, 2790 (1996).

[38] F. H. L. Essler, A. M. Tsvelik and G. Delfino, Quasi-one-
dimensional spin-12 Heisenberg magnets in their ordered
phase: Correlation functions, Phys. Rev. B 56, 11001
(1997).

[39] A. W. Sandvik, Multichain Mean-Field Theory of Quasi-
One-Dimensional Quantum Spin Systems, Phys. Rev.
Lett. 83, 3069 (1999).

[40] F. H. L. Essler and R. M. Konik, in From Fields to
Strings: Circumnavigating Theoretical Physics, ed. M.
Shifman, A. Vainshtein and J. Wheater (World Scien-
tific, Singapore, 2005); cond-mat/0412421.

[41] N. Ishimura and H. Shiba, Dynamical Correlation Func-
tions of One-Dimensional Anisotropic Heisenberg Model
with Spin 1/2. I: Ising-Like Antiferromagnets, Prog.
Theor. Phys. 63, 743 (1980).

[42] A. O. Gogolin, A. A. Nersesyan and A. M. Tsvelik,
Bosonization in Strongly Correlated Systems (Cambridge
University Press, 1999).

[43] T. Giamarchi, Quantum Physics in One Dimension (Ox-
ford University Press, New York, 2004).

[44] I. Affleck, in Dynamical properties of unconventional
magnetic systems, NATO ASI series E 349, eds A. Skjel-
torp and D. Sherrington, Kluwer Academic (1998); cond-
mat/9705127.

[45] G. Delfino and G. Mussardo, Non-integrable aspects of
the multi-frequency sine-Gordon model , Nucl. Phys. B
516, 675 (1998); G. Mussardo, V. Riva, G. Sotkov, Semi-
classical particle spectrum of double sine-Gordon model,
Nucl. Phys. B 687, 189 (2004).

[46] S. White, Density matrix formulation for quantum renor-
malization groups, Phys. Rev. Lett.69, 2863 (1992).
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