174 research outputs found

    Network size, structure and mutualism dependence affect the propensity for plant-pollinator extinction cascades

    Get PDF
    1. Pollinator network structure arising from the extent and strength of interspecific mutualistic interactions can promote species persistence and community robustness. However, environmental change may re-organise network structure limiting capacity to absorb or resist shocks and increasing species extinctions. 2. We investigated if habitat disturbance and the level of mutualism dependence between species affected the robustness of insect–flower visitation networks Following a recently developed Stochastic Co-extinction Model (SCM), we ran simulations to produce the number of extinction episodes (cascade degree), which we correlated with network structure in undisturbed and disturbed habitat. We also explicitly modelled whether a species’ intrinsic dependence on mutualism affected the propensity for extinction cascades in the network. 3. Habitat disturbance generated a gradient in network structure with those from disturbed sites being less connected, but more speciose and so larger. Controlling for network size (z-score standardisation against the null model) revealed that disturbed networks had disproportionately low linkage density, high specialisation, fewer insect visitors per plant species (vulnerability) and lower nestedness (NODF). 4. This network structure gradient driven by disturbance increased and decreased different aspects of robustness to simulated plant extinction. Disturbance decreased the risk that an initial insect extinction would follow a plant species loss. Although, this effect disappeared when network size and connectance were standardised, suggesting the lower connectance of disturbed networks increased robustness to an initial secondary extinction. 5. However, if a secondary extinction occurred then networks from disturbed habitat were more prone to large co-extinction cascades, likely resulting from a greater chance of extinction in these larger, speciose networks. Conversely, when species mutualism dependency was explicit in the SCM simulations the disturbed networks were disproportionately more robust to very large co-extinction cascades, potentially caused by non-random patterns of interaction between species differing in dependence on mutualism. 6. Our results showed disturbance altered the size and the distribution of interspecific interactions in the networks to affect their robustness to co-extinction cascades. Controlling for effects due to network size and the interspecific variation in demographic dependence on mutualism can improve insight into properties conferring the structural robustness of networks to environmental changes

    Risks to pollinators and pollination from invasive alien species

    Get PDF
    Invasive alien species modify pollinator biodiversity and the services they provide that underpin ecosystem function and human well-being. Building on the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES) global assessment of pollinators and pollination, we synthesize current understanding of invasive alien impacts on pollinators and pollination. Invasive alien species create risks and opportunities for pollinator nutrition, re-organize species interactions to affect native pollination and community stability, and spread and select for virulent diseases. Risks are complex but substantial, and depend greatly on the ecological function and evolutionary history of both the invader and the recipient ecosystem. We highlight evolutionary implications for pollination from invasive alien species, and identify future research directions, key messages and options for decision-making

    National patterns of functional diversity and redundancy in predatory ground beetles and bees associated with key UK arable crops

    Get PDF
    1. Invertebrates supporting natural pest control and pollination ecosystem services are crucial to world-wide crop production. Understanding national patterns in the spatial structure of natural pest control and pollination can be used to promote effective crop management and contribute to long-term food security. 2. We mapped the species richness and functional diversity of ground beetles and bees to provide surrogate measures of natural pest control and pollination for Great Britain. Func- tional diversity represents the value and range of morphological and behavioural traits that support ecosystem services. We modelled the rate at which functional diversity collapsed in response to species extinctions to provide an index of functional redundancy. 3. Deficits in functional diversity for both pest control and pollination were found in areas of high arable crop production. Ground beetle functional redundancy was positively corre- lated with the landscape cover of semi-natural habitats where extinctions were ordered by body size and dispersal ability. For bees, functional redundancy showed a weak positive cor- relation with semi-natural habitat cover where species extinctions were ordered by feeding specialization. 4. Synthesis and applications. Increasingly, evidence suggests that functionally diverse assem- blages of ground beetles and bees may be a key element to strategies that aim to support pol- lination and natural pest control in crops. If deficits in both functional diversity and redundancy in areas of high crop production are to be reversed, then targeted implementation of agri-environment schemes that establish semi-natural habitat may provide a policy mecha- nism for supporting these ecosystem services

    The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production

    Get PDF
    The thematic assessment of pollinators, pollination and food production carried out under the auspices of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services aims to assess animal pollination as a regulating ecosystem service underpinning food production in the context of its contribution to nature’s gifts to people and supporting a good quality of life. To achieve this, it focuses on the role of native and managed pollinators, the status and trends of pollinators and pollinator-plant networks and pollination, drivers of change, impacts on human well-being, food production in response to pollination declines and deficits and the effectiveness of responses

    Summary for policymakers of the thematic assessment on pollinators, pollination and food production

    Get PDF
    The thematic assessment of pollinators, pollination and food production carried out under the auspices of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services aims to assess animal pollination as a regulating ecosystem service underpinning food production in the context of its contribution to nature’s gifts to people and supporting a good quality of life. To achieve this, it focuses on the role of native and managed pollinators, the status and trends of pollinators and pollinator-plant networks and pollination, drivers of change, impacts on human well-being, food production in response to pollination declines and deficits and the effectiveness of responses. The chapters and their executive summaries of this assessment are available as document IPBES/4/INF/1/Rev.2 (www.ipbes.net). The present document is a summary for policymakers of the information presented in these chapters

    Land use and soil characteristics affect soil organisms differently from above-ground assemblages

    Get PDF
    Background: Land-use is a major driver of changes in biodiversity worldwide, but studies have overwhelmingly focused on above-ground taxa: the effects on soil biodiversity are less well known, despite the importance of soil organisms in ecosystem functioning. We modelled data from a global biodiversity database to compare how the abundance of soil-dwelling and above-ground organisms responded to land use and soil properties. Results: We found that land use affects overall abundance differently in soil and above-ground assemblages. The abundance of soil organisms was markedly lower in cropland and plantation habitats than in primary vegetation and pasture. Soil properties influenced the abundance of soil biota in ways that differed among land uses, suggesting they shape both abundance and its response to land use. Conclusions: Our results caution against assuming models or indicators derived from above-ground data can apply to soil assemblages and highlight the potential value of incorporating soil properties into biodiversity models
    • …
    corecore