405 research outputs found

    Translating model simulators to analysis models

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-540-78743-3_6Proceedings of 11th International Conference, FASE 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.We present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language by means of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets.Work sponsored by the Spanish Ministry of Science and Education, project MOSAIC (TSI2005-08225-C07-06

    Gastric Helicobacter infection induces iron deficiency in the INS-GAS mouse

    Get PDF
    There is increasing evidence from clinical and population studies for a role of H. pylori infection in the aetiology of iron deficiency. Rodent models of Helicobacter infection are helpful for investigating any causal links and mechanisms of iron deficiency in the host. The aim of this study was to investigate the effects of gastric Helicobacter infection on iron deficiency and host iron metabolism/transport gene expression in hypergastrinemic INS-GAS mice. INS-GAS mice were infected with Helicobacter felis for 3, 6 and 9 months. At post mortem, blood was taken for assessment of iron status and gastric mucosa for pathology, immunohistology and analysis of gene expression. Chronic Helicobacter infection of INS- GAS mice resulted in decreased serum iron, transferrin saturation and hypoferritinemia and increased Total iron binding capacity (TIBC). Decreased serum iron concentrations were associated with a concomitant reduction in the number of parietal cells, strengthening the association between hypochlorhydria and gastric Helicobacter-induced iron deficiency. Infection with H. felis for nine months was associated with decreased gastric expression of iron metabolism regulators hepcidin, Bmp4 and Bmp6 but increased expression of Ferroportin 1, the iron efflux protein, iron absorption genes such as Divalent metal transporter 1, Transferrin receptor 1 and also Lcn2 a siderophore-binding protein. The INS-GAS mouse is therefore a useful model for studying Helicobacter-induced iron deficiency. Furthermore, the marked changes in expression of gastric iron transporters following Helicobacter infection may be relevant to the more rapid development of carcinogenesis in the Helicobacter infected INS-GAS model

    Protocol for the challenge non-typhoidal Salmonella (CHANTS) study: a first-in-human, in-patient, double-blind, randomised, safety and dose-escalation controlled human infection model in the UK

    Get PDF
    Introduction Invasive non-typhoidal Salmonella (iNTS) serovars are a major cause of community-acquired bloodstream infections in sub-Saharan Africa (SSA). In this setting, Salmonella enterica serovar Typhimurium accounts for two-thirds of infections and is associated with an estimated case fatality rate of 15%–20%. Several iNTS vaccine candidates are in early-stage assessment which—if found effective—would provide a valuable public health tool to reduce iNTS disease burden. The CHANTS study aims to develop a first-in-human Salmonella Typhimurium controlled human infection model, which can act as a platform for future vaccine evaluation, in addition to providing novel insights into iNTS disease pathogenesis. Methods and analysis This double-blind, safety and dose-escalation study will randomise 40–80 healthy UK participants aged 18–50 to receive oral challenge with one of two strains of S. Typhimurium belonging to the ST19 (strain 4/74) or ST313 (strain D23580) lineages. 4/74 is a global strain often associated with diarrhoeal illness predominantly in high-income settings, while D23580 is an archetypal strain representing invasive disease-causing isolates found in SSA. The primary objective is to determine the minimum infectious dose (colony-forming unit) required for 60%–75% of participants to develop clinical or microbiological features of systemic salmonellosis. Secondary endpoints are to describe and compare the clinical, microbiological and immunological responses following challenge. Dose escalation or de-escalation will be undertaken by continual-reassessment methodology and limited within prespecified safety thresholds. Exploratory objectives are to describe mechanisms of iNTS virulence, identify putative immune correlates of protection and describe host–pathogen interactions in response to infection. Ethics and dissemination Ethical approval has been obtained from the NHS Health Research Authority (London—Fulham Research Ethics Committee 21/PR/0051; IRAS Project ID 301659). The study findings will be disseminated in international peer-reviewed journals and presented at national/international stakeholder meetings. Study outcome summaries will be provided to both funders and participants. Trial registration number NCT0587015

    Netazepide inhibits expression of Pappalysin 2 in type-1 gastric neuroendocrine tumors

    Get PDF
    Background & Aims: In patients with autoimmune atrophic gastritis and achlorhydria, hypergastrinemia is associated with the development of type 1 gastric neuroendocrine tumors (gNETs). Twelve months of treatment with netazepide (YF476), an antagonist of the cholecystokinin B receptor (CCKBR or CCK2R), eradicated some type 1 gNETs in patients. We investigated the mechanisms by which netazepide induced gNET regression using gene expression profiling. Methods: We obtained serum samples and gastric corpus biopsy specimens from 8 patients with hypergastrinemia and type 1 gNETs enrolled in a phase 2 trial of netazepide. Control samples were obtained from 10 patients without gastric cancer. We used amplified and biotinylated sense-strand DNA targets from total RNA and Affymetrix (Thermofisher Scientific, UK) Human Gene 2.0 ST microarrays to identify differentially expressed genes in stomach tissues from patients with type 1 gNETs before, during, and after netazepide treatment. Findings were validated in a human AGS GR gastric adenocarcinoma cell line that stably expresses human CCK2R, primary mouse gastroids, transgenic hypergastrinemic INS-GAS mice, and patient samples. Results: Levels of pappalysin 2 (PAPPA2) messenger RNA were reduced significantly in gNET tissues from patients receiving netazepide therapy compared with tissues collected before therapy. PAPPA2 is a metalloproteinase that increases the bioavailability of insulin-like growth factor (IGF) by cleaving IGF binding proteins (IGFBPs). PAPPA2 expression was increased in the gastric corpus of patients with type 1 gNETs, and immunohistochemistry showed localization in the same vicinity as CCK2R-expressing enterochromaffin-like cells. Up-regulation of PAPPA2 also was found in the stomachs of INS-GAS mice. Gastrin increased PAPPA2 expression with time and in a dose-dependent manner in gastric AGS GR cells and mouse gastroids by activating CCK2R. Knockdown of PAPPA2 in AGS GR cells with small interfering RNAs significantly decreased their migratory response and tissue remodeling in response to gastrin. Gastrin altered the expression and cleavage of IGFBP3 and IGFBP5. Conclusions: In an analysis of human gNETS and mice, we found that gastrin up-regulates the expression of gastric PAPPA2. Increased PAPPA2 alters IGF bioavailability, cell migration, and tissue remodeling, which are involved in type 1 gNET development. These effects are inhibited by netazepide

    Gastrin-induced miR-222 promotes gastric tumor development by suppressing p27kip1

    Get PDF
    Background and aims Elevated circulating concentrations of the hormone gastrin contribute to the development of gastric adenocarcinoma and types-1 and 2 gastric neuroendocrine tumors (NETs). MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate proteins which in turn influence various biological processes. We hypothesised that gastrin induces the expression of specific gastric miRNAs within CCK2 receptor (CCK2R) expressing cells and that these mediate functionally important actions of gastrin.Results Gastrin increased miR-222 expression in AGSGR cells, with maximum changes observed at 10 nM G17 for 24 h. Signalling occurred via CCK2R and the PKC and PI3K pathways. miR-222 expression was increased in the serum and gastric corpus mucosa of hypergastrinemic INS-GAS mice and hypergastrinemic patients with autoimmune atrophic gastritis and type 1 gastric NETs; it decreased in patients following treatment with the CCK2R antagonist netazepide (YF476). Gastrin-induced miR-222 overexpression resulted in reduced expression and cytoplasmic mislocalisation of p27kip1, which in turn caused actin remodelling and increased migration in AGSGR cells. Materials and methods miRNA PCR arrays were used to identify changes in miRNA expression following G17 treatment of human gastric adenocarcinoma cells stably transfected with CCK2R (AGSGR). miR-222 was further investigated using primer assays and samples from hypergastrinemic mice and humans. Chemically synthesised mimics and inhibitors were used to assess cellular phenotypical changes associated with miR-222 dysregulation.Conclusions These data indicate a novel mechanism contributing to gastrin-associated gastric tumor development. miR-222 may also be a promising biomarker for monitoring gastrin induced premalignant changes in the stomach

    KCTD12 Auxiliary Proteins Modulate Kinetics of GABAB Receptor-Mediated Inhibition in Cholecystokinin-Containing Interneurons

    Get PDF
    Cholecystokinin-expressing interneurons (CCK-INs) mediate behavior state-dependent inhibition in cortical circuits and themselves receive strong GABAergic input. However, it remains unclear to what extent GABAB receptors (GABABRs) contribute to their inhibitory control. Using immunoelectron microscopy, we found that CCK-INs in the rat hippocampus possessed high levels of dendritic GABABRs and KCTD12 auxiliary proteins, whereas postsynaptic effector Kir3 channels were present at lower levels. Consistently, whole-cell recordings revealed slow GABABR-mediated inhibitory postsynaptic currents (IPSCs) in most CCK-INs. In spite of the higher surface density of GABABRs in CCK-INs than in CA1 principal cells, the amplitudes of IPSCs were comparable, suggesting that the expression of Kir3 channels is the limiting factor for the GABABR currents in these INs. Morphological analysis showed that CCK-INs were diverse, comprising perisomatic-targeting basket cells (BCs), as well as dendrite-targeting (DT) interneurons, including a previously undescribed DT type. GABABR-mediated IPSCs in CCK-INs were large in BCs, but small in DT subtypes. In response to prolonged activation, GABABR-mediated currents displayed strong desensitization, which was absent in KCTD12-deficient mice. This study highlights that GABABRs differentially control CCK-IN subtypes, and the kinetics and desensitization of GABABR-mediated currents are modulated by KCTD12 proteins
    corecore