93 research outputs found

    Strongly correlated growth of Rydberg aggregates in a vapor cell

    Get PDF
    The observation of strongly interacting many-body phenomena in atomic gases typically requires ultracold samples. Here we show that the strong interaction potentials between Rydberg atoms enable the observation of many-body effects in an atomic vapor, even at room temperature. We excite Rydberg atoms in cesium vapor and observe in real-time an out-of-equilibrium excitation dynamics that is consistent with an aggregation mechanism. The experimental observations show qualitative and quantitative agreement with a microscopic theoretical model. Numerical simulations reveal that the strongly correlated growth of the emerging aggregates is reminiscent of soft-matter type systems

    Effective dynamics of strongly dissipative Rydberg gases

    Get PDF
    We investigate the evolution of interacting Rydberg gases in the limit of strong noise and dissipation. Starting from a description in terms of a Markovian quantum master equation we derive effective equations of motion that govern the dynamics on a "coarse-grained" timescale where fast dissipative degrees of freedom have been adiabatically eliminated. Specifically, we consider two scenarios which are of relevance for current theoretical and experimental studies --- Rydberg atoms in a two-level (spin) approximation subject to strong dephasing noise as well as Rydberg atoms under so-called electromagnetically induced transparency (EIT) conditions and fast radiative decay. In the former case we find that the effective dynamics is described by classical rate equations up to second order in an appropriate perturbative expansion. This drastically reduces the computational complexity of numerical simulations in comparison to the full quantum master equation. When accounting for the fourth order correction in this expansion, however, we find that the resulting equation breaks the preservation of positivity and thus cannot be interpreted as a proper classical master rate equation. In the EIT system we find that the expansion up to second order retains information not only on the "classical" observables, but also on some quantum coherences. Nevertheless, this perturbative treatment still achieves a non-trivial reduction of complexity with respect to the original problem

    End-to-End Available Bandwidth Estimation Tools, An Experimental Comparison

    Full text link
    Abstract. The available bandwidth of a network path impacts the per-formance of many applications, such as VoIP calls, video streaming and P2P content distribution systems. Several tools for bandwidth estimation have been proposed in the last years but there is still uncertainty in their accuracy and efficiency under different network conditions. Although a number of experimental evaluations have been carried out in order to compare some of these methods, a comprehensive evaluation of all the existing active tools for available bandwidth estimation is still missing. This article introduces an empirical comparison of most of the active esti-mation tools actually implemented and freely available nowadays. Abing, ASSOLO, DietTopp, IGI, pathChirp, Pathload, PTR, Spruce and Yaz have been compared in a controlled environment and in presence of dif-ferent sources of cross-traffic. The performance of each tool has been investigated in terms of accuracy, time and traffic injected into the net-work to perform an estimation.

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research

    Resilient Computing Curriculum Draft -- ReSIST NoE Deliverable D16

    Get PDF
    This Deliverable presents the first version of ReSIST's Curriculum in Resilient Computing, limited to the description of the syllabi for the first year (Semesters 1 and 2) and indicates the line and title for the curriculum in the second year (semesters 3 and 4) and propose it to the general discussion for improvements. The curriculum will be updated and completed in successive versions that will take advantage of a large open discussion inside and outside ReSIS

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research

    Analysis of LAS Scheduling for Job Size Distributions with High Variance

    No full text
    Recent studies of Internet traffic have shown that flow size distributions often exhibit a high variability property in the sense that most of the flows are short and more than half of the total load is constituted by a small percentage of the largest flows. In the light of this observation, it is interesting to revisit scheduling policies that are known to favor small jobs in order to quantify the benefit for small and the penalty for large jobs. Among all scheduling policies that do not require knowledge of job size, the least attained service (LAS) scheduling policy is known to favor small jobs the most
    corecore