415 research outputs found

    Coupled ocean-land millennial-scale changes 1.26 million years ago, recorded at Site U1385 off Portugal

    Get PDF
    While a growing body of evidence indicates that North Atlantic millennial-scale climate variability extends to the Early Pleistocene, its impact on terrestrial ecosystems has not been established. Here we present ultra-high resolution (70–140 year) joint foraminiferal isotopic and pollen analyses from IODP Site U1385 off Portugal, focusing on a short glacial section of Marine Isotope Stage 38, ~ 1.26 million years ago. Our records reveal the presence of millennial-scale variability in the coupled ocean–atmosphere–land system in the North Atlantic and provide the first direct evidence for the response of western Iberian vegetation to abrupt climate changes in the Early Pleistocene. The magnitude and pacing of changes bear significant similarities to Dansgaard–Oeschger variability of the last two glacials

    Can we predict the duration of an interglacial?

    Get PDF
    Differences in the duration of interglacials have long been apparent in palaeoclimate records of the Late and Middle Pleistocene. However, a systematic evaluation of such differences has been hampered by the lack of a metric that can be applied consistently through time and by difficulties in separating the local from the global component in various proxies. This, in turn, means that a theoretical framework with predictive power for interglacial duration has remained elusive. Here we propose that the interval between the terminal oscillation of the bipolar seesaw and three thousand years (kyr) before its first major reactivation provides an estimate that approximates the length of the sea-level highstand, a measure of interglacial duration. We apply this concept to interglacials of the last 800 kyr by using a recently-constructed record of interhemispheric variability. The onset of interglacials occurs within 2 kyr of the boreal summer insolation maximum/precession minimum and is consistent with the canonical view of Milankovitch forcing pacing the broad timing of interglacials. Glacial inception always takes place when obliquity is decreasing and never after the obliquity minimum. The phasing of precession and obliquity appears to influence the persistence of interglacial conditions over one or two insolation peaks, leading to shorter (~ 13 kyr) and longer (~ 28 kyr) interglacials. Glacial inception occurs approximately 10 kyr after peak interglacial conditions in temperature and CO2, representing a characteristic timescale of interglacial decline. Second-order differences in duration may be a function of stochasticity in the climate system, or small variations in background climate state and the magnitude of feedbacks and mechanisms contributing to glacial inception, and as such, difficult to predict. On the other hand, the broad duration of an interglacial may be determined by the phasing of astronomical parameters and the history of insolation, rather than the instantaneous forcing strength at inception

    Similar millennial climate variability on the Iberian margin during two early Pleistocene glacials and MIS 3

    Get PDF
    Although millennial-scale climate variability (<10 ka) has been well studied during the last glacial cycles, little is known about this important aspect of climate in the early Pleistocene, prior to the Middle Pleistocene Transition. Here we present an early Pleistocene climate record at centennial resolution for two representative glacials (marine isotope stages (MIS) 37–41 from approximately 1235 to 1320 ka) during the “41 ka world” at Integrated Ocean Drilling Program Site U1385 (the “Shackleton Site”) on the southwest Iberian margin. Millennial-scale climate variability was suppressed during interglacial periods (MIS 37, MIS 39, and MIS 41) and activated during glacial inceptions when benthic ή18O exceeded 3.2‰. Millennial variability during glacials MIS 38 and MIS 40 closely resembled Dansgaard-Oeschger events from the last glacial (MIS 3) in amplitude, shape, and pacing. The phasing of oxygen and carbon isotope variability is consistent with an active oceanic thermal bipolar see-saw between the Northern and Southern Hemispheres during most of the prominent stadials. Surface cooling was associated with systematic decreases in benthic carbon isotopes, indicating concomitant changes in the meridional overturning circulation. A comparison to other North Atlantic records of ice rafting during the early Pleistocene suggests that freshwater forcing, as proposed for the late Pleistocene, was involved in triggering or amplifying perturbations of the North Atlantic circulation that elicited a bipolar see-saw response. Our findings support similarities in the operation of the climate system occurring on millennial time scales before and after the Middle Pleistocene Transition despite the increases in global ice volume and duration of the glacial cycles

    Abrupt intrinsic and extrinsic responses of southwestern Iberian vegetation to millennial-scale variability over the past 28 ka

    Get PDF
    We present new high-resolution pollen records combined with palaeoceanographic proxies from the same samples in deep-sea cores SHAK06-5K and MD01-2444 on the southwestern Iberian Margin, documenting regional vegetation responses to orbital and millennial-scale climate changes over the last 28 ka. The chronology of these records is based on high-resolution radiocarbon dates of monospecific samples of the planktonic foraminifera Globigerina bulloides, measured from SHAK06-5K and MD01-2444 and aligned using an automated stratigraphical alignment method. Changes in temperate and steppe vegetation during Marine Isotope Stage 2 are closely coupled with sea surface temperature (SST) and global ice-volume changes. The peak expansion of thermophilous woodland between ~10.1 and 8.4 cal ka bp lags behind the boreal summer insolation maximum by ~2 ka, possibly arising from residual high-latitude ice-sheets into the Holocene. Rapid changes in pollen percentages are coeval with abrupt transitions in SSTs, precipitation and winter temperature at the onset and end of Heinrich Stadial 2, the ice-rafted debris event and end of Heinrich Stadial 1, and the onset of the Younger Dryas, suggesting extrinsically forced southwestern Iberian ecosystem changes by abrupt North Atlantic climate events. In contrast, the abrupt decline in thermophilous elements at ~7.8 cal ka bp indicates an intrinsically mediated abrupt vegetation response to the gradually declining boreal insolation, potentially resulting from the crossing of a seasonality of precipitation threshold

    Challenges and research priorities to understand interactions between climate, ice sheets and global mean sea level during past interglacials

    Get PDF
    Quaternary interglacials provide key observations of the Earth system's responses to orbital and greenhouse gas forcing. They also inform on the capabilities of Earth system models, used for projecting the polar ice-sheet and sea-level responses to a regional warmth comparable to that expected by 2100 C.E. However, a number of uncertainties remain regarding the processes and feedbacks linking climate, ice-sheet and sea-level changes during past warm intervals. Here, we delineate the major research questions that need to be resolved and future research directions that should be taken by the paleoclimate, sea-level and ice-sheet research communities in order to increase confidence in the use of past interglacial climate, ice-sheet and sea-level reconstructions to constrain future predictions. These questions were formulated during a joint workshop held by the PAGES-INQUA PALSEA (PALeo constraints on SEA level rise) and the PAGES-PMIP QUIGS (QUaternary InterGlacialS) Working Groups in September 2018.PAGE

    Extreme glacial cooling likely led to hominin depopulation of Europe in the Early Pleistocene

    Get PDF
    The oldest known hominin remains in Europe [~1.5 to ~1.1 million years ago (Ma)] have been recovered from Iberia, where paleoenvironmental reconstructions have indicated warm and wet interglacials and mild glacials, supporting the view that once established, hominin populations persisted continuously. We report analyses of marine and terrestrial proxies from a deep-sea core on the Portugese margin that show the presence of pronounced millennial-scale climate variability during a glacial period ~1.154 to ~1.123 Ma, culminating in a terminal stadial cooling comparable to the most extreme events of the last 400,000 years. Climate envelope–model simulations reveal a drastic decrease in early hominin habitat suitability around the Mediterranean during the terminal stadial. We suggest that these extreme conditions led to the depopulation of Europe, perhaps lasting for several successive glacial-interglacial cycles

    Land-ocean changes on orbital and millennial time scales and the penultimate glaciation

    Get PDF
    Past glacials can be thought of as natural experiments in which variations in boundary conditions influenced the character of climate change. However, beyond the last glacial, an integrated view of orbital- and millennial-scale changes and their relation to the record of glaciation has been lacking. Here, we present a detailed record of variations in the land-ocean system from the Portuguese margin during the penultimate glacial and place it within the framework of ice-volume changes, with particular reference to European ice-sheet dynamics. The interaction of orbital- and millennial-scale variability divides the glacial into an early part with warmer and wetter overall conditions and prominent climate oscillations, a transitional mid-part, and a late part with more subdued changes as the system entered a maximum glacial state. The most extreme event occurred in the mid-part and was associated with melting of the extensive European ice sheet and maximum discharge from the Fleuve Manche river. This led to disruption of the meridional overturning circulation, but not a major activation of the bipolar seesaw. In addition to stadial duration, magnitude of freshwater forcing, and background climate, the evidence also points to the influence of the location of freshwater discharges on the extent of interhemispheric heat transport

    Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe

    Get PDF
    The suitability of MIS 11c and MIS 19c as analogues of our present interglacial and its natural evolution is still debated. Here we examine the regional expression of the Holocene and its orbital analogues over SW Iberia using a model-data comparison approach. Regional tree fraction and climate based on snapshot and transient experiments using the LOVECLIM model are evaluated against the terrestrial-marine profiles from Site U1385 documenting the regional vegetation and climatic changes. The pollen-based reconstructions show a larger forest optimum during the Holocene compared to MIS 11c and MIS 19c, putting into question their analogy in SW Europe. Pollen-based and model results indicate reduced MIS 11c forest cover compared to the Holocene primarily driven by lower winter precipitation, which is critical for Mediterranean forest development. Decreased precipitation was possibly induced by the amplified MIS 11c latitudinal insolation and temperature gradient that shifted the westerlies northwards. In contrast, the reconstructed lower forest optimum at MIS 19c is not reproduced by the simulations probably due to the lack of Eurasian ice sheets and its related feedbacks in the model. Transient experiments with time-varying insolation and CO2 reveal that the SW Iberian forest dynamics over the interglacials are mostly coupled to changes in winter precipitation mainly controlled by precession, CO2 playing a negligible role. Model simulations reproduce the observed persistent vegetation changes at millennial time scales in SW Iberia and the strong forest reductions marking the end of the interglacial "optimum".SFRH/BD/9079/2012, SFRH/BPD/108712/2015, SFRH/BPD/108600/2015info:eu-repo/semantics/publishedVersio

    Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy

    Get PDF
    The transient response of bedrock rivers to a drop in base level can be used to discriminate between competing fluvial erosion models. However, some recent studies of bedrock erosion conclude that transient river long profiles can be approximately characterized by a transport‐limited erosion model, while other authors suggest that a detachment‐limited model best explains their field data. The difference is thought to be due to the relative volume of sediment being fluxed through the fluvial system. Using a pragmatic approach, we address this debate by testing the ability of end‐member fluvial erosion models to reproduce the well‐documented evolution of three catchments in the central Apennines (Italy) which have been perturbed to various extents by an independently constrained increase in relative uplift rate. The transport‐limited model is unable to account for the catchments’response to the increase in uplift rate, consistent with the observed low rates of sediment supply to the channels. Instead, a detachment‐limited model with a threshold corresponding to the field‐derived median grain size of the sediment plus a slope‐dependent channel width satisfactorily reproduces the overall convex long profiles along the studied rivers. Importantly, we find that the prefactor in the hydraulic scaling relationship is uplift dependent, leading to landscapes responding faster the higher the uplift rate, consistent with field observations. We conclude that a slope‐ dependent channel width and an entrainment/erosion threshold are necessary ingredients when modeling landscape evolution or mapping the distribution of fluvial erosion rates in areas where the rate of sediment supply to channels is low
    • 

    corecore