206 research outputs found

    Electromagnetic finite-size effects to the hadronic vacuum polarization

    Full text link
    In order to reduce the current hadronic uncertainties in the theory prediction for the anomalous magnetic moment of the muon, lattice calculations need to reach sub-percent accuracy on the hadronic-vacuum-polarization contribution. This requires the inclusion of O(α)\mathcal{O}(\alpha) electromagnetic corrections. The inclusion of electromagnetic interactions in lattice simulations is known to generate potentially large finite-size effects suppressed only by powers of the inverse spatial extent. In this paper we derive an analytic expression for the QEDL\mathrm{QED}_{\mathrm{L}} finite-volume corrections to the two-pion contribution to the hadronic vacuum polarization at next-to-leading order in the electromagnetic coupling in scalar QED. The leading term is found to be of order 1/L31/L^{3} where LL is the spatial extent. A 1/L21/L^{2} term is absent since the current is neutral and a photon far away thus sees no charge and we show that this result is universal. Our analytical results agree with results from the numerical evaluation of loop integrals as well as simulations of lattice scalar U(1)U(1) gauge theory with stochastically generated photon fields. In the latter case the agreement is up to exponentially suppressed finite-volume effects. For completeness we also calculate the hadronic vacuum polarization in infinite volume using a basis of 2-loop master integrals.Comment: 42 pages, 11 figure

    Protein synthesis of the pro-inflammatory S100A8/A9 complex in plasmacytoid dendritic cells and cell surface S100A8/A9 on leukocyte subpopulations in systemic lupus erythematosus

    Get PDF
    Introduction: Systemic lupus erythematosus (SLE) is an autoimmune disease with chronic or episodic inflammation in many different organ systems, activation of leukocytes and production of pro-inflammatory cytokines. The heterodimer of the cytosolic calcium-binding proteins S100A8 and S100A9 (S100A8/A9) is secreted by activated polymorphonuclear neutrophils (PMNs) and monocytes and serves as a serum marker for several inflammatory diseases. Furthermore, S100A8 and S100A9 have many pro-inflammatory properties such as binding to Toll-like receptor 4 (TLR4). In this study we investigated if aberrant cell surface S100A8/A9 could be seen in SLE and if plasmacytoid dendritic cells (pDCs) could synthesize S100A8/A9. Methods: Flow cytometry, confocal microscopy and real-time PCR of flow cytometry-sorted cells were used to measure cell surface S100A8/A9, intracellular S100A8/A9 and mRNA levels of S100A8 and S100A9, respectively. Results: Cell surface S100A8/A9 was detected on all leukocyte subpopulations investigated except for T cells. By confocal microscopy, real-time PCR and stimulation assays, we could demonstrate that pDCs, monocytes and PMNs could synthesize S100A8/A9. Furthermore, pDC cell surface S100A8/A9 was higher in patients with active disease as compared to patients with inactive disease. Upon immune complex stimulation, pDCs up-regulated the cell surface S100A8/A9. SLE patients had also increased serum levels of S100A8/A9. Conclusions: Patients with SLE had increased cell surface S100A8/A9, which could be important in amplification and persistence of inflammation. Importantly, pDCs were able to synthesize S100A8/A9 proteins and up-regulate the cell surface expression upon immune complex-stimulation. Thus, S100A8/A9 may be a potent target for treatment of inflammatory diseases such as SLE

    No evidence of association between genetic variants of the PDCD1 ligands and SLE

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldPDCD1, an immunoreceptor involved in peripheral tolerance has previously been shown to be genetically associated with systemic lupus erythematosus (SLE). PDCD1 has two ligands whose genes are located in close proximity on chromosome 9p24. Our attention was drawn to these ligands after finding suggestive linkage to a marker (gata62f03, Z=2.27) located close to their genes in a genome scan of Icelandic families multiplex for SLE. Here, we analyse Swedish trios (N=149) for 23 single nucleotide polymorphisms (SNPs) within the genes of the PDCD1 ligands. Initially, indication of association to eight SNPs was observed, and these SNPs were therefore also analysed in Mexican trios (N=90), as well as independent sets of patients and controls from Sweden (152 patients, 448 controls) and Argentina (288 patients, 288 controls). We do not find support for genetic association to SLE. This is the first genetic study of SLE and the PDCD1 ligands and the lack of association in several cohorts implies that these genes are not major risk factors for SLE.Genes and Immunity (2007) 8, 69-74. doi:10.1038/sj.gene.6364360; published online 30 November 2006

    A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5

    Get PDF
    Systemic lupus erythematosus (SLE) is the prototype autoimmune disease where genes regulated by type I interferon (IFN) are over-expressed and contribute to the disease pathogenesis. Because signal transducer and activator of transcription 4 (STAT4) plays a key role in the type I IFN receptor signaling, we performed a candidate gene study of a comprehensive set of single nucleotide polymorphism (SNPs) in STAT4 in Swedish patients with SLE. We found that 10 out of 53 analyzed SNPs in STAT4 were associated with SLE, with the strongest signal of association (P = 7.1 × 10−8) for two perfectly linked SNPs rs10181656 and rs7582694. The risk alleles of these 10 SNPs form a common risk haplotype for SLE (P = 1.7 × 10−5). According to conditional logistic regression analysis the SNP rs10181656 or rs7582694 accounts for all of the observed association signal. By quantitative analysis of the allelic expression of STAT4 we found that the risk allele of STAT4 was over-expressed in primary human cells of mesenchymal origin, but not in B-cells, and that the risk allele of STAT4 was over-expressed (P = 8.4 × 10−5) in cells carrying the risk haplotype for SLE compared with cells with a non-risk haplotype. The risk allele of the SNP rs7582694 in STAT4 correlated to production of anti-dsDNA (double-stranded DNA) antibodies and displayed a multiplicatively increased, 1.82-fold risk of SLE with two independent risk alleles of the IRF5 (interferon regulatory factor 5) gene

    Fine mapping and conditional analysis identify a new mutation in the autoimmunity susceptibility gene BLK that leads to reduced half-life of the BLK protein

    Get PDF
    OBJECTIVES: To perform fine mapping of the autoimmunity susceptibility gene BLK and identify functional variants involved in systemic lupus erythematosus (SLE). METHODS: Genotyping of 1163 European SLE patients and 1482 controls and imputation were performed covering the BLK gene with 158 single-nucleotide polymorphisms. Logistic regression analysis was done using PLINK and conditional analyses using GENABEL's test score. Transfections of BLK constructs on HEK293 cells containing the novel mutation or the wild type form were analysed for their effect on protein half-life using a protein stability assay, cycloheximide and western blot. CHiP-qPCR for detection of nuclear factor Îș B (NFkB) binding. RESULTS: Fine mapping of BLK identified two independent genetic effects with functional consequences: one represented by two tightly linked associated haplotype blocks significantly enriched for NFÎșB-binding sites and numerous putative regulatory variants whose risk alleles correlated with low BLK mRNA levels. Binding of NFkBp50 and p65 to an associated 1.2 Kb haplotype segment was confirmed. A second independent genetic effect was represented by an Ala71Thr, low-frequency missense substitution with an OR=2.31 (95% CI 1.38 to 3.86). The 71Thr decreased BLK protein half-life. CONCLUSIONS: These results show that rare and common regulatory variants in BLK are involved in disease susceptibility and both, albeit independently, lead to reduced levels of BLK protein

    Newborn screening for presymptomatic diagnosis of complement and phagocyte deficiencies

    Full text link
    The clinical outcomes of primary immunodeficiencies (PIDs) are greatly improved by accurate diagnosis early in life. However, it is not common to consider PIDs before the manifestation of severe clinical symptoms. Including PIDs in the nation-wide newborn screening programs will potentially improve survival and provide better disease management and preventive care in PID patients. This calls for the detection of disease biomarkers in blood and the use of dried blood spot samples, which is a part of routine newborn screening programs worldwide. Here, we developed a newborn screening method based on multiplex protein profiling for parallel diagnosis of 22 innate immunodeficiencies affecting the complement system and respiratory burst function in phagocytosis. The proposed method uses a small fraction of eluted blood from dried blood spots and is applicable for population-scale performance. The diagnosis method is validated through a retrospective screening of immunodeficient patient samples. This diagnostic approach can pave the way for an earlier, more comprehensive and accurate diagnosis of complement and phagocytic disorders, which ultimately lead to a healthy and active life for the PID patientsThis work was supported by the Swedish Research Council (VR) and grants provided by the Stockholm County Council (ALF)

    Age and Sex-Associated Changes of Complement Activity and Complement Levels in a Healthy Caucasian Population

    Get PDF
    Introduction: The complement system is essential for an adequate immune response. Much attention has been given to the role of complement in disease. However, to better understand complement in pathology, it is crucial to first analyze this system under different physiological conditions. The aim of the present study was therefore to investigate the inter-individual variation in complement activity and the influences of age and sex.Methods: Complement levels and functional activity were determined in 120 healthy volunteers, 60 women, 60 men, age range 20–69 year. Serum functional activity of the classical pathway (CP), lectin pathway activated by mannan (MBL-LP) and alternative pathway (AP) was measured in sera, using deposition of C5b-9 as readout. In addition, levels of C1q, MBL, MASP-1, MASP-2, ficolin-2, ficolin-3, C2, C4, C3, C5, C6, C7, C8, C9, factor B, factor D, properdin, C1-inhibitor and C4b-binding protein, were determined. Age- and sex-related differences were evaluated.Results: Significantly lower AP activity was found in females compared to males. Further analysis of the AP revealed lower C3 and properdin levels in females, while factor D concentrations were higher. MBL-LP activity was not influenced by sex, but MBL and ficolin-3 levels were significantly lower in females compared to males. There were no significant differences in CP activity or CP components between females and males, nevertheless females had significantly lower levels of the terminal components. The CP and AP activity was significantly higher in the elderly, in contrast to MBL-LP activity. Moreover, C1-inhibitor, C5, C8, and C9 increased with age in contrast to a decrease of factor D and C3 levels. In-depth analysis of the functional activity assays revealed that MBL-LP activity was predominantly dependent on MBL and MASP-2 concentration, whereas CP activity relied on C2, C1-inhibitor and C5 levels. AP activity was strongly and directly associated with levels of C3, factor B and C5.Conclusion: This study demonstrated significant sex and age-related differences in complement levels and functionality in the healthy population. Therefore, age and sex analysis should be taken into consideration when discussing complement-related pathologies and subsequent complement-targeted therapies
    • 

    corecore