417 research outputs found

    Aggression in Low Functioning Children and Adolescents with Autistic Disorder

    Get PDF
    BACKGROUND: Parents, caregivers and mental health professionals have often reported violence and aggression in children or adolescents with autistic disorder. However, most of these observations derived from anecdotal reports, and studies on frequency and characterization of aggression in autism remain limited. Our objective was to better characterize and understand the different types of aggressive behaviors displayed by a large group of individuals with autism in different observational situations. METHODOLOGY/FINDINGS: The study was conducted on 74 children and adolescents with autism and 115 typically developing control individuals matched for sex, age and pubertal stage. Other-Injurious Behaviors (OIB) were assessed in three observational situations (parents at home, two caregivers at day-care, a nurse and a child psychiatrist during blood drawing) using validated scales. The frequency of OIB was significantly higher in individuals with autism compared to typically developing control individuals during the blood drawing (23% vs. 0%, P<0 .01). The parents observed significantly less OIB in their children than caregivers (34% vs. 58%, P<0.05). In addition, the most frequent concurrent behaviors occurring just before the appearance of OIB in individuals with autism were anxiety-related behaviors and excitation according to the parental as well as the caregiver observation. CONCLUSIONS/SIGNIFICANCE: The results suggest that in a stressful situation, such as the blood drawing, individuals with autism release their stress through behaviors such as OIB, whereas typically developing individuals regulate and express their stress through cognitive skills such as mental coping strategies, symbolization skills with representation and anticipation of the stressful situation, social interaction and verbal or non-verbal communication. The findings underline also the key role of the environment in assessing OIB and developing therapeutic perspectives, with an individual who modulates his/her behavior according to the environment, and an environment that perceives this behavior and reacts to it with different tolerance thresholds according to the observers

    Enhanced transport in transistor by tuning transition-metal oxide electronic states interfaced with diamond

    Get PDF
    High electron affinity transition-metal oxides (TMOs) have gained a central role in two-dimensional (2D) electronics by enabling unprecedented surface charge doping efficiency in numerous exotic 2D solid-state semiconductors. Among them, diamond-based 2D electronics are entering a new era by using TMOs as surface acceptors instead of previous molecular-like unstable acceptors. Similarly, surface-doped diamond with TMOs has recently yielded record sheet hole concentrations (2 × 1014 cm−2) and launched the quest for its implementation in microelectronic devices. Regrettably, field-effect transistor operation based on this surface doping has been so far disappointing due to fundamental material obstacles such as (i) carrier scattering induced by nonhomogeneous morphology of TMO surface acceptor layer, (ii) stoichiometry changes caused by typical transistor fabrication process, and (iii) carrier transport loss due to electronic band energy misalignment. This work proposes and demonstrates a general strategy that synergistically surmounts these three barriers by developing an atomic layer deposition of a hydrogenated MoO3 layer as a novel efficient surface charge acceptor for transistors. It shows high surface uniformity, enhanced immunity to harsh fabrication conditions, and benefits from tunable electronic gap states for improving carrier transfer at interfaces. These breakthroughs permit crucial integration of TMO surface doping into transistor fabrication flows and allow outperforming electronic devices to be reached

    Evaluation of Thermal Versus Plasma-Assisted ALD Al2O3 as Passivation for InAlN/AlN/GaN HEMTs

    Get PDF
    Al2O3 films deposited by thermal and plasma-assisted atomic layer deposition (ALD) were evaluated as passivation layers for InAlN/AlN/GaN HEMTs. As a reference, a comparison was made with the more conventional plasma enhanced chemical vapor deposition deposited SiNx passivation. The difference in sheet charge density, threshold voltage, f(T) and f(max) was moderate for the three samples. The gate leakage current differed by several orders of magnitude, in favor of Al2O3 passivation, regardless of the deposition method. Severe current slump was measured for the HEMT passivated by thermal ALD, whereas near-dispersion free operation was observed for the HEMT passivated by plasma-assisted ALD. This had a direct impact on the microwave output power. Large-signal measurements at 3 GHz revealed that HEMTs with Al2O3 passivation exhibited 77% higher output power using plasma-assisted ALD compared with thermal ALD

    Modulation of Brain β-Endorphin Concentration by the Specific Part of the Y Chromosome in Mice

    Get PDF
    International audienceBackground: Several studies in animal models suggest a possible effect of the specific part of the Y-chromosome (Y NPAR) on brain opioid, and more specifically on brain b-endorphin (BE). In humans, male prevalence is found in autistic disorder in which observation of abnormal peripheral or central BE levels are also reported. This suggests gender differences in BE associated with genetic factors and more precisely with Y NPAR. Methodology/Principal Findings: Brain BE levels and plasma testosterone concentrations were measured in two highly inbred strains of mice, NZB/BlNJ (N) and CBA/HGnc (H), and their consomic strains for the Y NPAR. An indirect effect of the Y NPAR on brain BE level via plasma testosterone was also tested by studying the correlation between brain BE concentration and plasma testosterone concentration in eleven highly inbred strains. There was a significant and major effect (P,0.0001) of the Y NPAR in interaction with the genetic background on brain BE levels. Effect size calculated using Cohen's procedure was large (56% of the total variance). The variations of BE levels were not correlated with plasma testosterone which was also dependent of the Y NPAR. Conclusions/Significance: The contribution of Y NPAR on brain BE concentration in interaction with the genetic background is the first demonstration of Y-chromosome mediated control of brain opioid. Given that none of the genes encompassed by the Y NPAR encodes for BE or its precursor, our results suggest a contribution of the sex-determining region (Sry, carried by Y NPAR) to brain BE concentration. Indeed, the transcription of the Melanocortin 2 receptor gene (Mc2R gene, identified as the proopiomelanocortin receptor gene) depends on the presence of Sry and BE is derived directly from proopiomelanocortin. The results shed light on the sex dependent differences in brain functioning and the role of Sry in the BE system might be related to the higher frequency of autistic disorder in males

    Pain Reactivity and Plasma β-Endorphin in Children and Adolescents with Autistic Disorder

    Get PDF
    International audienceBackground: Reports of reduced pain sensitivity in autism have prompted opioid theories of autism and have practical care ramifications. Our objective was to examine behavioral and physiological pain responses, plasma β-endorphin levels and their relationship in a large group of individuals with autism.Methodology/Principal Findings: The study was conducted on 73 children and adolescents with autism and 115 normal individuals matched for age, sex and pubertal stage. Behavioral pain reactivity of individuals with autism was assessed in three observational situations (parents at home, two caregivers at day-care, a nurse and child psychiatrist during blood drawing), and compared to controls during venepuncture. Plasma β-endorphin concentrations were measured by radioimmunoassay. A high proportion of individuals with autism displayed absent or reduced behavioral pain reactivity at home (68.6%), at day-care (34.2%) and during venepuncture (55.6%). Despite their high rate of absent behavioral pain reactivity during venepuncture (41.3 vs. 8.7% of controls, P<0.0001), individuals with autism displayed a significantly increased heart rate in response to venepuncture (P<0.05). Moreover, this response (Δ heart rate) was significantly greater than for controls (mean±SEM; 6.4±2.5 vs. 1.3±0.8 beats/min, P<0.05). Plasma β-endorphin levels were higher in the autistic group (P<0.001) and were positively associated with autism severity (P<0.001) and heart rate before or after venepuncture (P<0.05), but not with behavioral pain reactivity.Conclusions/Significance: The greater heart rate response to venepuncture and the elevated plasma β-endorphin found in individuals with autism reflect enhanced physiological and biological stress responses that are dissociated from observable emotional and behavioral reactions. The results suggest strongly that prior reports of reduced pain sensitivity in autism are related to a different mode of pain expression rather than to an insensitivity or endogenous analgesia, and do not support opioid theories of autism. Clinical care practice and hypotheses regarding underlying mechanisms need to assume that children with autism are sensitive to pain

    Adipocyte ATP-binding cassette G1 promotes triglyceride storage, fat mass growth, and human obesity

    Get PDF
    The role of ATP-binding Cassette G1 (ABCG1) transporter in human pathophysiology is still largely unknown. Indeed, beyond its role in mediating free cholesterol efflux to HDL, ABCG1 transporter equally promotes lipid accumulation in a triglyceride (TG)-rich environment through regulation of the bioavailability of Lipoprotein Lipase (LPL).As both ABCG1 and LPL are expressed in adipose tissue, we hypothesize that ABCG1 is implicated in adipocyte TG storage and could be then a major actor in adipose tissue fat accumulation.Silencing of Abcg1 expression by RNAi in 3T3-L1 preadipocytes compromised LPL-dependent TG accumulation during initial phase of differentiation. Generation of stable Abcg1 Knockdown 3T3-L1 adipocytes revealed that Abcg1 deficiency reduces TG storage and diminishes lipid droplet size through inhibition of PparÎł expression. Strikingly, local inhibition of adipocyte Abcg1 in adipose tissue from mice fed a high fat diet led to a rapid decrease of adiposity and weight gain. Analysis of two frequent ABCG1 SNPs (rs1893590 (A/C) and rs1378577 (T/G)) in morbidly obese individuals indicated that elevated ABCG1 expression in adipose tissue was associated with an increased PPARÎł expression and adiposity concomitant to an increased fat mass and BMI (haplotype AT&gt;GC). The critical role of ABCG1 regarding obesity was further confirmed in independent populations of severe obese and diabetic obese individuals.For the first time, this study identifies a major role of adipocyte ABCG1 in adiposity and fat mass growth and suggests that adipose ABCG1 might represent a potential therapeutic target in obesity

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself
    • …
    corecore