2,542 research outputs found
Diamonds in HD 97048
We present adaptive optics high angular resolution (\sim0\farcs1)
spectroscopic observations in the 3 m region of the Herbig Ae/Be star HD
97048. For the first time, we spatially resolve the emission in the diamond
features at 3.43 and 3.53 m and in the adjacent continuum. Using both the
intensity profiles along the slit and reconstructed two-dimensional images of
the object, we derive full-width at half-maximum sizes consistent with the
predictions for a circumstellar disk seen pole-on. The diamond emission
originates in the inner region ( AU) of the disk.Comment: ApJLetter, in pres
CARMA interferometric observations of 2MASS J044427+2512: the first spatially resolved observations of thermal emission of a brown dwarf disk
We present CARMA 1.3 mm continuum data of the disk surrounding the young
brown dwarf 2MASS J044427+2512 in the Taurus molecular cloud. The high angular
resolution of the CARMA observations (0.16 arcsec) allows us to spatially
resolve for the first time the thermal emission from dust around a brown dwarf.
We analyze the interferometric visibilities and constrain the disk outer radius
adopting disk models with power-law radial profiles of the dust surface
density. In the case of a power-law index equal to or lower than 1, we obtain a
disk radius in the range of about 15 - 30 AU, while larger disks are inferred
for steeper radial profiles. By combining this information on the disk spatial
extent with the sub-mm spectral index of this source we find conclusive
evidence for mm-sized grains, or larger, in this brown dwarf disk. We discuss
the implications of our results on the models of dust evolution in
proto-planetary disks and brown dwarf formation.Comment: 14 pages, 3 figures, Accepted for publication in ApJ Letter
Protostellar clusters in intermediate-mass (IM) star forming regions
The transition between the low density groups of T Tauri stars and the high
density clusters around massive stars occurs in the intermediate-mass (IM)
range (M2--8 M). High spatial resolution studies of IM young
stellar objects (YSO) can provide important clues to understand the clustering
in massive star forming regions.
Aims: Our aim is to search for clustering in IM Class 0 protostars. The high
spatial resolution and sensitivity provided by the new A configuration of the
Plateau de Bure Interferometer (PdBI) allow us to study the clustering in these
nearby objects.
Methods: We have imaged three IM Class 0 protostars (Serpens-FIRS 1, IC 1396
N, CB 3) in the continuum at 3.3 and 1.3mm using the PdBI. The sources have
been selected with different luminosity to investigate the dependence of the
clustering process on the luminosity of the source.
Results: Only one millimeter (mm) source is detected towards the low
luminosity source Serpens--FIRS 1. Towards CB 3 and IC1396 N, we detect two
compact sources separated by 0.05 pc. The 1.3mm image of IC 1396 N, which
provides the highest spatial resolution, reveal that one of these cores is
splitted in, at least, three individual sources.Comment: 4 pages, 3 figures, accepted for publication in Astronomy and
Astrophysics Letters (Special Feature IRAM/PdB
Brown dwarf disks with ALMA
We present ALMA continuum and spectral line data at 0.89 mm and 3.2 mm for
three disks surrounding young brown dwarfs and very low mass stars in the
Taurus star forming region. Dust thermal emission is detected and spatially
resolved for all the three disks, while CO(J=3-2) emission is seen in two
disks. We analyze the continuum visibilities and constrain the disks physical
structure in dust. The results of our analysis show that the disks are
relatively large, the smallest one with an outer radius of about 70 AU. The
inferred disk radii, radial profiles of the dust surface density and disk to
central object mass ratios lie within the ranges found for disks around more
massive young stars. We derive from our observations the wavelength dependence
of the millimeter dust opacity. In all the three disks data are consistent with
the presence of grains with at least millimeter sizes, as also found for disks
around young stars, and confirm that the early stages of the solid growth
toward planetesimals occur also around very low mass objects. We discuss the
implications of our findings on models of solids evolution in protoplanetary
disks, on the main mechanisms proposed for the formation of brown dwarfs and
very low mass stars, as well as on the potential of finding rocky and giant
planets around very low mass objects.Comment: 15 pages, 10 figures, accepted for publication in Ap
X-Shooter study of accretion in -Ophiucus: very low-mass stars and brown dwarfs
We present new VLT/X-Shooter optical and NIR spectra of a sample of 17
candidate young low-mass stars and BDs in the rho-Ophiucus cluster. We derived
SpT and Av for all the targets, and then we determined their physical
parameters. All the objects but one have M*<0.6 Msun, and 8 have mass below or
close to the hydrogen-burning limit. Using the intensity of various emission
lines present in their spectra, we determined the Lacc and Macc for all the
objects. When compared with previous works targeting the same sample, we find
that, in general, these objects are not as strongly accreting as previously
reported, and we suggest that the reason is our more accurate estimate of the
photospheric parameters. We also compare our findings with recent works in
other slightly older star-forming regions to investigate possible differences
in the accretion properties, but we find that the accretion properties for our
targets have the same dependence on the stellar and substellar parameters as in
the other regions. This leads us to conclude that we do not find evidence for a
different dependence of Macc with M* when comparing low-mass stars and BDs.
Moreover, we find a similar small (1 dex) scatter in the Macc-M* relation as in
some of our recent works in other star-forming regions, and no significant
differences in Macc due to different ages or properties of the regions. The
latter result suffers, however, from low statistics and sample selection biases
in the current studies. The small scatter in the Macc-M* correlation confirms
that Macc in the literature based on uncertain photospheric parameters and
single accretion indicators, such as the Ha width, can lead to a scatter that
is unphysically large. Our studies show that only broadband spectroscopic
surveys coupled with a detailed analysis of the photospheric and accretion
properties allows us to properly study the evolution of disk accretion rates.Comment: accepted for publication in Astronomy & Astrophysics. Abstract
shortened to fit arXiv constraint
IRAS 18511+0146: a proto Herbig Ae/Be cluster?
Context: The evolution of a young protocluster depends on the relative
spatial distributions and dynamics of both stars and gas. Aims: We study the
distribution and properties of the gas and stars surrounding the luminous (10^4
L_sun) protocluster IRAS 18511+0146. Methods: IRAS 18511+0146 and the cluster
associated with it has been investigated using the sub-millimetre (JCMT-SCUBA),
infrared (Spitzer-MIPSGAL, Spitzer-GLIMPSE, Palomar) and radio (VLA) continuum
data. Cluster simulations have been carried out in order to understand the
properties of clusters as well as to compare with the observations. Results:
The central most obscured part of the protocluster coincident with the compact
sub-millimetre source found with SCUBA is responsible for at least 2/3 of the
total luminosity. A number of cluster members have been identified which are
bright in mid infrared and show rising (near to mid infrared) spectral energy
distributions suggesting that these are very young stellar sources. In the mid
infrared 8.0 micron image, a number of filamentary structures and clumps are
detected in the vicinity of IRAS 18511+0146. Conclusions: Based on the
luminosity and cluster size as well as on the evolutionary stages of the
cluster members, IRAS 18511+0146 is likely to be protocluster with the most
massive object being a precursor to a Herbig type star.Comment: Accepted by the Astronomy and Astrophysics (23 Pages, 5 Tables, 12
Figures
Trapping dust particles in the outer regions of protoplanetary disks
Aims. We attempt to explain grain growth to mm sized particles and their retention in the outer regions of protoplanetary disks, as observed at sub-mm and mm wavelengths, by investigating whether strong inhomogeneities in the gas density profiles can decelerate excessive radial drift and help the dust particles to grow.
Methods. We use coagulation/fragmentation and disk-structure models, to simulate the evolution of dust in a bumpy surface density profile, which we mimic with a sinusoidal disturbance. For different values of the amplitude and length scale of the bumps, we investigate the ability of this model to produce and retain large particles on million-year timescales. In addition, we compare the pressure inhomogeneities considered in this work with the pressure profiles that come from magnetorotational instability. Using the Common Astronomy Software Applications ALMA simulator, we study whether there are observational signatures of these pressure inhomogeneities that can be seen with ALMA.
Results. We present the conditions required to trap dust particles and the corresponding calculations predicting the spectral slope in the mm-wavelength range, to compare with current observations. Finally, we present simulated images using different antenna configurations of ALMA at different frequencies, to show that the ring structures will be detectable at the distances of either the Taurus Auriga or Ophiucus star-forming regions
Photoevaporation of Circumstellar Disks due to External FUV Radiation in Stellar Aggregates
When stars form in small groups (N = 100 - 500 members), their circumstellar
disks are exposed to little EUV radiation but a great deal of FUV radiation
from massive stars in the group. This paper calculates mass loss rates for
circumstellar disks exposed to external FUV radiation. Previous work treated
large disks and/or intense radiation fields in which the disk radius exceeds
the critical radius (supercritical disks) where the sound speed in the FUV
heated layer exceeds the escape speed. This paper shows that significant mass
loss still takes place for subcritical systems. Some of the gas extends beyond
the disk edge (above the disk surface) to larger distances where the
temperature is higher, the escape speed is lower, and an outflow develops. The
evaporation rate is a sensitive function of the stellar mass and disk radius,
which determine the escape speed, and the external FUV flux, which determines
the temperature structure of the flow. Disks around red dwarfs are readily
evaporated and shrink to disk radii of 15 AU on short time scales (10 Myr) when
exposed to moderate FUV fields with = 3000. Although disks around solar
type stars are more durable, these disks shrink to 15 AU in 10 Myr for intense
FUV radiation fields with = 30,000; such fields exist in the central 0.7
pc of a cluster with N = 4000 stars. If our solar system formed in the presence
of such strong FUV radiation fields, this mechanism could explain why Neptune
and Uranus in our solar system are gas poor, whereas Jupiter and Saturn are gas
rich. This mechanism for photoevaporation can also limit the production of
Kuiper belt objects and can suppress giant planet formation in sufficiently
large clusters, such as the Hyades, especially for disks associated with low
mass stars.Comment: 49 pages including 12 figures; accepted to Ap
- …
