308 research outputs found
Sds22 regulates aurora B activity and microtubule-kinetochore interactions at mitosis
Sds22 defines protein phosphatase 1 location and function at kinetochores and subsequent activity of aurora B in mitosis
Bod1, a novel kinetochore protein required for chromosome biorientation
We have combined the proteomic analysis of Xenopus laevis in vitro–assembled chromosomes with RNA interference and live cell imaging in HeLa cells to identify novel factors required for proper chromosome segregation. The first of these is Bod1, a protein conserved throughout metazoans that associates with a large macromolecular complex and localizes with kinetochores and spindle poles during mitosis. Small interfering RNA depletion of Bod1 in HeLa cells produces elongated mitotic spindles with severe biorientation defects. Bod1-depleted cells form syntelic attachments that can oscillate and generate enough force to separate sister kinetochores, suggesting that microtubule–kinetochore interactions were intact. Releasing Bod1-depleted cells from a monastrol block increases the frequency of syntelic attachments and the number of cells displaying biorientation defects. Bod1 depletion does not affect the activity or localization of Aurora B but does cause mislocalization of the microtubule depolymerase mitotic centromere- associated kinesin and prevents its efficient phosphorylation by Aurora B. Therefore, Bod1 is a novel kinetochore protein that is required for the detection or resolution of syntelic attachments in mitotic spindles
Interactive program for analysis and design problems in advanced composites technology
During the past year an experimental program in the fracture of advanced fiber composites has been completed. The experimental program has given direction to additional experimental and theoretical work. A synthesis program for designing low weight multifastener joints in composites is proposed, based on extensive analytical background. A number of failed joints have been thoroughly analyzed to evaluate the failure hypothesis used in the synthesis procedure. Finally, a new solution is reported for isotropic and anisotropic laminates using the boundary-integral method. The solution method offers significant savings of computer core and time for important problems
Fast fluorescence microscopy for imaging the dynamics of embryonic development
Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field
Esperanto for histones : CENP-A, not CenH3, is the centromeric histone H3 variant
The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres
Bioimage informatics: a new category in Bioinformatics
The last two decades have witnessed great advances in biological tissue labeling and automated microscopic imaging that, in turn, have revolutionized how biologists visualize molecular, sub-cellular, cellular, and super-cellular structures and study their respective functions. Tremendous volumes of multi-dimensional bioimaging data are now being generated in almost every branch of biology. How to interpret such image datasets in a quantitative, objective, automatic and efficient way has become a major challenge in current computational biology. Bioimage informatics methods have begun to turn image data into useful biological knowledge (Peng, 2008; Swedlow, et al., 2009; Shamir, et al., 2010; Danuser, 2011). The essential methods of bioimage informatics involve largescale bioimage generation, visualization, analysis and management. Bioimage informatics also encompasses both hypothesis- and datadriven exploratory approaches, with an emphasis on how to generat
Gebiss: an ImageJ plugin for the specification of ground truth and the performance evaluation of 3D segmentation algorithms.
Background: Image segmentation is a crucial step in quantitative microscopy that helps to define regions of tissues, cells or subcellular compartments. Depending on the degree of user interactions, segmentation methods can be divided into manual, automated or semi-automated approaches. 3D image stacks usually require automated methods due to their large number of optical sections. However, certain applications benefit from manual or semi-automated approaches. Scenarios include the quantification of 3D images with poor signal-to-noise ratios or the generation of so-called ground truth segmentations that are used to evaluate the accuracy of automated segmentation methods.
Results: We have developed Gebiss; an ImageJ plugin for the interactive segmentation, visualisation and quantification of 3D microscopic image stacks. We integrated a variety of existing plugins for threshold-based segmentation and volume visualisation.
Conclusions: We demonstrate the application of Gebiss to the segmentation of nuclei in live Drosophila embryos and the quantification of neurodegeneration in Drosophila larval brains. Gebiss was developed as a cross-platform ImageJ plugin and is freely available on the web at http://imaging.bii.a-star.edu.sg/projects/gebiss
A novel application of motion analysis for detecting stress responses in embryos at different stages of development.
Motion analysis is one of the tools available to biologists to extract biologically relevant information from image datasets and has been applied to a diverse range of organisms. The application of motion analysis during early development presents a challenge, as embryos often exhibit complex, subtle and diverse movement patterns. A method of motion analysis able to holistically quantify complex embryonic movements could be a powerful tool for fields such as toxicology and developmental biology to investigate whole organism stress responses. Here we assessed whether motion analysis could be used to distinguish the effects of stressors on three early developmental stages of each of three species: (i) the zebrafish Danio rerio (stages 19 h, 21.5 h and 33 h exposed to 1.5% ethanol and a salinity of 5); (ii) the African clawed toad Xenopus laevis (stages 24, 32 and 34 exposed to a salinity of 20); and iii) the pond snail Radix balthica (stages E3, E4, E6, E9 and E11 exposed to salinities of 5, 10 and 15). Image sequences were analysed using Sparse Optic Flow and the resultant frame-to-frame motion parameters were analysed using Discrete Fourier Transform to quantify the distribution of energy at different frequencies. This spectral frequency dataset was then used to construct a Bray-Curtis similarity matrix and differences in movement patterns between embryos in this matrix were tested for using ANOSIM
A call for public archives for biological image data
Public data archives are the backbone of modern biological and biomedical
research. While archives for biological molecules and structures are
well-established, resources for imaging data do not yet cover the full range of
spatial and temporal scales or application domains used by the scientific
community. In the last few years, the technical barriers to building such
resources have been solved and the first examples of scientific outputs from
public image data resources, often through linkage to existing molecular
resources, have been published. Using the successes of existing biomolecular
resources as a guide, we present the rationale and principles for the
construction of image data archives and databases that will be the foundation
of the next revolution in biological and biomedical informatics and discovery.Comment: 13 pages, 1 figur
- …
