632 research outputs found

    Radiative proton-antiproton annihilation and isospin mixing in protonium

    Get PDF
    A detailed analysis of the radiative ppˉp\bar p annihilation is made in the framework of a two-step formalism, the ppˉp\bar p annihilates into meson channels containing a vector meson with a subsequent conversion into a photon via the vector dominance model (VDM). Both steps are derived from the underlying quark model. First, branching ratios for radiative protonium annihilation are calculated and compared with data. Then, details of the isospin interference are studied for different models of the initial protonium state and also for different kinematical form factors. The isospin interference is shown to be uniquely connected to the ppˉnnˉp\bar p - n\bar n mixing in the protonium state. Values of the interference terms directly deduced from data are consistent with theoretical expectations, indicating a dominant ppˉp\bar p component for the 1S0^1S_0 and a sizable nnˉn\bar n component for the 3S1^3S_1 protonium state. The analysis is extended to the ppˉγΦp\bar p \to \gamma \Phi transition, where the large observed branching ratio remains unexplained in the VDM approach.Comment: 34 pages, RevTeX, 2 figures, to appear in Phys. Rev. C; typos correcte

    Three-dimensional media for mobile devices

    Get PDF
    Cataloged from PDF version of article.This paper aims at providing an overview of the core technologies enabling the delivery of 3-D Media to next-generation mobile devices. To succeed in the design of the corresponding system, a profound knowledge about the human visual system and the visual cues that form the perception of depth, combined with understanding of the user requirements for designing user experience for mobile 3-D media, are required. These aspects are addressed first and related with the critical parts of the generic system within a novel user-centered research framework. Next-generation mobile devices are characterized through their portable 3-D displays, as those are considered critical for enabling a genuine 3-D experience on mobiles. Quality of 3-D content is emphasized as the most important factor for the adoption of the new technology. Quality is characterized through the most typical, 3-D-specific visual artifacts on portable 3-D displays and through subjective tests addressing the acceptance and satisfaction of different 3-D video representation, coding, and transmission methods. An emphasis is put on 3-D video broadcast over digital video broadcasting-handheld (DVB-H) in order to illustrate the importance of the joint source-channel optimization of 3-D video for its efficient compression and robust transmission over error-prone channels. The comparative results obtained identify the best coding and transmission approaches and enlighten the interaction between video quality and depth perception along with the influence of the context of media use. Finally, the paper speculates on the role and place of 3-D multimedia mobile devices in the future internet continuum involving the users in cocreation and refining of rich 3-D media content

    Orbital and physical parameters of eclipsing binaries from the ASAS catalogue -- I. A sample of systems with components' masses between 1 and 2 M_\odot

    Full text link
    We derive the absolute physical and orbital parameters for a sample of 18 detached eclipsing binaries from the \emph{All Sky Automated Survey} (ASAS) database based on the available photometry and our own radial velocity measurements. The radial velocities (RVs) are computed using spectra we collected with the 3.9-m Anglo-Australian Telescope and its \emph{University College London Echelle Spectrograph} and the 1.9-m SAAO Radcliffe telescope and its \emph{Grating Instrument for Radiation Analysis with a Fibre Fed Echelle}. In order to obtain as precise RVs as possible, most of the systems were observed with an iodine cell available at the AAT/UCLES and/or analyzed using the two-dimensional cross-correlation technique (TODCOR). The RVs were measured with TODCOR using synthetic template spectra as references. However, for two objects we used our own approach to the tomographic disentangling of the binary spectra to provide observed template spectra for the RV measurements and to improve the RV precision even more. For one of these binaries, AI Phe, we were able to the obtain an orbital solution with an RV rmsrms of 62 and 24 m s1^{-1} for the primary and secondary respectively. For this system, the precision in Msin3iM \sin^3{i} is 0.08%. For the analysis, we used the photometry available in the ASAS database. We combined the RV and light curves using PHOEBE and JKTEBOP codes to obtain the absolute physical parameters of the systems. Having precise RVs we were able to reach \sim0.2 % precision (or better) in masses in several cases but in radii, due to the limited precision of the ASAS photometry, we were able to reach a precision of only 1% in one case and 3-5 % in a few more cases. For the majority of our objects, the orbital and physical analysis is presented for the first time.Comment: 16 pages, 2 figures, 6 tables in the main text, 1 table in appendix, to appear in MNRA

    HS Hya about to turn off its eclipses

    Full text link
    Aims: We aim to perform the first long-term analysis of the system HS Hya. Methods: We performed an analysis of the long-term evolution of the light curves of the detached eclipsing system HS Hya. Collecting all available photometric data since its discovery, the light curves were analyzed with a special focus on the evolution of system's inclination. Results: We find that the system undergoes a rapid change of inclination. Since its discovery until today the system's inclination changed by more than 15 deg. The shape of the light curve changes, and now the eclipses are almost undetectable. The third distant component of the system is causing the precession of the close orbit, and the nodal period is about 631 yr. Conclusions: New precise observations are desperately needed, preferably this year, because the amplitude of variations is decreasing rapidly every year. We know only 10 such systems on the whole sky at present.Comment: 4 pages, 3 figures, published in 2012A&A...542L..23

    ASAS Light Curves of Intermediate Mass Eclipsing Binaries and the Parameters of HI Mon

    Full text link
    We present a catalog of 56 candidate intermediate mass eclipsing binary systems extracted from the 3rd data release of the All Sky Automated Survey. We gather pertinent observational data and derive orbital properties, including ephemerides, for these systems as a prelude to anticipated spectroscopic observations. We find that 37 of the 56, or ~66% of the systems are not identified in the Simbad Astronomical Database as known binaries. As a specific example, we show spectroscopic data obtained for the system HI Mon (B0 V + B0.5 V) observed at key orbital phases based on the computed ephemeris, and we present a combined spectroscopic and photometric solution for the system and give stellar parameters for each component.Comment: 83 pages, 63 figure

    High speed photometry of faint cataclysmic variables - VI. Car2, V1040 Cen, Ha 075648, IL Nor (Nova Nor 1893), HS Pup (Nova Pup 1963), SDSS J2048-06, CSS 081419-005022 and CSS 112634-100210

    Full text link
    We have observed 8 faint cataclysmic variable stars photometrically. The nova-like Car2 was extensively sampled but showed little variability. V1040 Cen was observed near the end of a dwarf nova outburst and possessed dwarf nova and quasi-periodic oscillations. Ha 075648 has strong large amplitude flickering and a possible orbital modulation at 3.49 h. The correct identification for the nova remnant IL Nor (Nova Nor 1893) has been established. HS Pup (Nova Pup 1963) has a possible orbital period of 3.244 h. SDSS J2048-06 is a low mass transfer dwarf nova that in quiescence shows slow variations at 7.67 h (though poorly sampled with our observations) and an orbital modulation at 87.26 min. The dwarf nova CSS 081419-005022 has an orbital period of 1.796 h and the eclipsing dwarf nova CSS 112634-100210 has an orbital period of 1.8581 h.Comment: 7 pages, 15 figures. Accepted for publication in MNRA

    On the Mixing of the Scalar Mesons f0(1370)f_0(1370), f0(1500)f_0(1500) and f0(1710)f_0(1710)

    Full text link
    Based on a 3×33\times3 mass matrix describing the mixing of the scalar states f0(1370)f_0(1370), f0(1500)f_0(1500) and f0(1710)f_0(1710), the hadronic decays of the three states are investigated. Taking into account the two possible assumptions concerning the mass level order of the bare states N>=uuˉ+ddˉ>/2|N>=|u\bar{u}+d\bar{d}>/\sqrt{2}, S>=ssˉ>|S>=|s\bar{s}> and G>=gg>|G>=|gg> in the scalar sector, MG>MS>MNM_G > M_S > M_N and MG>MN>MSM_G > M_N > M_S, we obtain the glueball-quarkonia content of the three states by solving the unlinear equations. Some predictions about the decays of the three states in two cases are presented, which can provide a stringent consistency check of the two assumptions.Comment: revtex 10 pages, 1 eps figur
    corecore