106 research outputs found

    Contact freezing: a review of experimental studies

    Get PDF
    This manuscript compiles both theoretical and experimental information on contact freezing with the aim to better understand this potentially important but still not well quantified heterogeneous freezing mode. There is no complete theory that describes contact freezing and how the energy barrier has to be overcome to nucleate an ice crystal by contact freezing. Experiments on contact freezing conducted using the cold plate technique indicate that it can initiate ice formation at warmer temperatures than immersion freezing. Additionally, a qualitative difference in the freezing temperatures between contact and immersion freezing has been found using different instrumentation and different ice nuclei. There is a lack of data on collision rates in most of the reported data, which inhibits a quantitative calculation of the freezing efficiencies. Thus, new or modified instrumentation to study contact nucleation in the laboratory and in the field are needed to identify the conditions at which contact nucleation could occur in the atmosphere. Important questions concerning contact freezing and its potential role for ice cloud formation and climate are also summarized

    Influence of the Practice Setting in Pediatric Occupational Therapy

    Get PDF
    Pediatric occupational therapists aim to promote the quality of life and functional abilities of children (Bowyer & Cahill, 2010). Pediatric Occupational Therapy can be provided through both school-based and non-school based settings to children who require varying sorts of special attention. The school setting requires therapists to focus on academic tasks that require less intensive equipment than non-school based occupational therapy (State of Connecticut Department of Education, 1999). Non-school based pediatric occupational therapists, however, are not as easily accessible as schoolbased therapists and require out-of-pocket or insurance-based pay. Consequently, it was presumed that one practice setting may be more useful for some children while its counterpart may prove to be more successful for others. However, it is now believed that pediatric occupational therapy is most beneficial when the two settings collaborate with one another even though they may differ

    Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles

    Get PDF
    Ice nucleation in the atmosphere is central to the understanding the microphysical properties of mixed-phase and cirrus clouds. Ambient conditions such as temperature (T) and relative humidity (RH), as well as aerosol properties such as chemical composition and mixing state play an important role in predicting ice formation in the troposphere. Previous field studies have reported the absence of sulfate and organic compounds on mineral dust ice crystal residuals sampled at mountain top stations or aircraft based measurements despite the long-range transport mineral dust is subjected to. We present laboratory studies of ice nucleation for immersion and deposition mode on ozone aged mineral dust particles for 233 T ns) are reported and observed to increase as a function of decreasing temperature. We present first results that demonstrate enhancement of the ice nucleation ability of aged mineral dust particles in both the deposition and immersion mode due to ageing. We also present the first results to show a suppression of heterogeneous ice nucleation activity without the condensation of a coating of (in)organic material. In immersion mode, low ozone exposed Ka particles showed enhanced ice activity requiring a median freezing temperature of 1.5 K warmer than that of untreated Ka, whereas high ozone exposed ATD particles showed suppressed ice nucleation requiring a median freezing temperature of 3 K colder than that of untreated ATD. In deposition mode, low exposure Ka had ice active fractions of an order of magnitude higher than untreated Ka, whereas high ozone exposed ATD had ice active fractions up to a factor of 4 lower than untreated ATD. From our results, we derive and present parameterizations in terms of ns(T) that can be used in models to predict ice nuclei concentrations based on available aerosol surface area

    Time dependence of immersion freezing: an experimental study on size selected kaolinite particles

    Get PDF
    The time dependence of immersion freezing was studied for temperatures between 236 K and 243 K. Droplets with single immersed, size-selected 400 nm and 800 nm kaolinite particles were produced at 300 K, cooled down to supercooled temperatures, and the fraction of frozen droplets with increasing residence time was detected. To simulate the conditions of immersion freezing in mixed-phase clouds we used the Zurich Ice Nucleation Chamber (ZINC) and its vertical extension, the Immersion Mode Cooling chAmber (IMCA). We observed that the frozen fraction of droplets increased with increasing residence time in the chamber. This suggests that there is a time dependence of immersion freezing and supports the importance of a stochastic component in the ice nucleation process. The rate at which droplets freeze was observed to decrease towards higher temperatures and smaller particle sizes. Comparison of the laboratory data with four different ice nucleation models, three based on classical nucleation theory with different representations of the particle surface properties and one singular, suggest that the classical, stochastic approach combined with a distribution of contact angles is able to reproduce the ice nucleation observed in these experiments most accurately. Using the models to calculate the increase in frozen fraction at typical mixed-phase cloud temperatures over an extended period of time, yields an equivalent effect of −1 K temperature shift for an increase in times scale by one order of magnitude. This suggests that temperature is more important than time

    Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles

    Get PDF
    A measurement campaign (IMBALANCE) conducted in 2009 was aimed at characterizing the physical and chemical properties of freshly emitted and photochemically aged combustion particles emitted from a log wood burner and diesel vehicles: a EURO3 Opel Astra with a diesel oxidation catalyst (DOC) but no particle filter and a EURO2 Volkswagen Transporter TDI Syncro without emission aftertreatment. Ice nucleation experiments in the deposition and condensation freezing modes were conducted with the Portable Ice Nucleation Chamber (PINC) at three nominal temperatures, −30 °C, −35 °C and −40 °C. Freshly emitted diesel particles showed ice formation only at −40 °C in the deposition mode at 137% relative humidity with respect to ice (RH<sub>i</sub>) and 92% relative humidity with respect to water (RH<sub>w</sub>), and photochemical ageing did not play a role in modifying their ice nucleation behaviour. Only one diesel experiment where α-pinene was added for the ageing process, showed an ice nucleation enhancement at −35 °C. Wood burning particles also act as ice nuclei (IN) at −40 °C in the deposition mode at the same conditions as for diesel particles and photochemical ageing also did not alter the ice formation properties of the wood burning particles. Unlike diesel particles, wood burning particles form ice via condensation freezing at −35 °C whereas no ice nucleation was observed at −30 °C. Photochemical ageing did not affect the ice nucleation ability of the diesel and wood burning particles at the three different temperatures investigated but a broader range of temperatures below −40 °C need to be investigated in order to draw an overall conclusion on the effect of photochemical ageing on deposition/condensation ice nucleation across the entire temperature range relevant to cold clouds

    Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles

    Get PDF
    During the measurement campaign FROST 2 (FReezing Of duST 2), the Leipzig Aerosol Cloud Interaction Simulator (LACIS) was used to investigate the influence of various surface modifications on the ice nucleating ability of Arizona Test Dust (ATD) particles in the immersion freezing mode. The dust particles were exposed to sulfuric acid vapor, to water vapor with and without the addition of ammonia gas, and heat using a thermodenuder operating at 250 °C. Size selected, quasi monodisperse particles with a mobility diameter of 300 nm were fed into LACIS and droplets grew on these particles such that each droplet contained a single particle. Temperature dependent frozen fractions of these droplets were determined in a temperature range between −40 °C ≤T≤−28 °C. The pure ATD particles nucleated ice over a broad temperature range with their freezing behavior being separated into two freezing branches characterized through different slopes in the frozen fraction vs. temperature curves. Coating the ATD particles with sulfuric acid resulted in the particles' IN potential significantly decreasing in the first freezing branch (T>−35 °C) and a slight increase in the second branch (T≤−35 °C). The addition of water vapor after the sulfuric acid coating caused the disappearance of the first freezing branch and a strong reduction of the IN ability in the second freezing branch. The presence of ammonia gas during water vapor exposure had a negligible effect on the particles' IN ability compared to the effect of water vapor. Heating in the thermodenuder led to a decreased IN ability of the sulfuric acid coated particles for both branches but the additional heat did not or only slightly change the IN ability of the pure ATD and the water vapor exposed sulfuric acid coated particles. In other words, the combination of both sulfuric acid and water vapor being present is a main cause for the ice active surface features of the ATD particles being destroyed. A possible explanation could be the chemical transformation of ice active metal silicates to metal sulfates. The strongly enhanced reaction between sulfuric acid and dust in the presence of water vapor and the resulting significant reductions in IN potential are of importance for atmospheric ice cloud formation. Our findings suggest that the IN concentration can decrease by up to one order of magnitude for the conditions investigated

    Structure and Phase Transitions of the 6, 6-Cyclopropane Isomer of C_ {61} H_ {2}

    Get PDF
    We have used x-ray powder diffraction and differential scanning calorimetry to study the crystalline structures and thermal behavior of the 6,6-cyclopropane isomer of C61H2. At room temperature, the C61H2 cyclopropane molecules, like those of the 6,5-annulene isomer and C60O epoxide, are orientationally disordered and crystallize on a face-centered-cubic lattice such that their methylene groups are statistically disordered among the octahedral voids. Unlike 6,5−C61H2 and C60O, the low-temperature structure is not Pa3¯, but rather a low-symmetry orthorhombic lattice in which a≈

    Designing research-based instructional materials that leverage dual-process theories of reasoning: Insights from testing one specific, theory-driven intervention

    Get PDF
    [This paper is part of the Focused Collection on Curriculum Development: Theory into Design.] Research in physics education has contributed substantively to improvements in the learning and teaching of university physics by informing the development of research-based instructional materials for physics courses. Reports on the design of these materials have tended to focus on overall improvements in student performance, while the role of theory in informing the development, refinement, and assessment of the materials is often not clearly articulated. In this article, we illustrate how dual-process theories of reasoning and decision making have guided the ongoing development, testing, and analysis of an instructional intervention, implemented at three different institutions, designed to build consistency in student reasoning about the application of Newton’s 2nd law to objects at rest. By employing constructs from cognitive science associated with dual-process theories of reasoning (such as mindware and cognitive reflection), we were able not only to examine the overall improvement in student performance but also to investigate the impact of the intervention on two aspects of productive reasoning—mindware and cognitive reflection. Our analysis showed that the intervention strengthened students’ mindware such that students were able to apply it as a criterion while checking the validity of their intuitive responses. Moreover, logistic regression revealed that the success of our intervention was mediated by the students’ cognitive reflection skills. Indeed, for students with comparable mindware, those who demonstrated a weaker tendency toward cognitive reflection were less likely to initiate conflict detection and therefore never had the opportunity to utilize their mindware. We believe that this kind of integrated, theory-driven approach to intervention design and testing represents an important first step in efforts to both account for and leverage domain-general reasoning phenomena in the learning and teaching of physics

    Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA

    Get PDF
    The homogeneous freezing of supercooled H<sub>2</sub>SO<sub>4</sub>/H<sub>2</sub>O solution droplets was investigated in the aerosol chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) of Forschungszentrum Karlsruhe. 24 freezing experiments were performed at temperatures between 189 and 235 K with aerosol particles in the diameter range 0.05 to 1 Âľm. Individual experiments started at homogeneous temperatures and ice saturation ratios between 0.9 and 0.95. Cloud cooling rates up to -2.8 K min<sup>-1</sup> were simulated dynamically in the chamber by expansion cooling using a mechanical pump. Depending on the cooling rate and starting temperature, freezing threshold relative humidities were exceeded after expansion time periods between about 1 and 10 min. The onset of ice formation was measured with three independent methods showing good agreement among each other. Ice saturation ratios measured at the onset of ice formation increased from about 1.4 at 231 K&nbsp; to about 1.75 at 189 K. The experimental data set including thermodynamic parameters as well as physical and chemical aerosol analysis provides a good basis for microphysical model applications
    • …
    corecore