463 research outputs found

    Controllable Shrinking and Shaping of Glass Nanocapillaries under Electron Irradiation

    Get PDF
    The ability to reshape nanopores and observe their shrinkage under an electron microscope is a powerful and novel technique. It increases the sensitivity of the resistive pulse sensing and enables to detect very short and small molecules. However, this has not yet been shown for glass nanocapillaries. In contrast to their solid-state nanopore counterparts, nanocapillaries are cheap, easily fabricated and in the production do not necessitate clean room facilities. We show for the first time that quartz nanocapillaries can be shrunken under a scanning electron microscope beam. Since the shrinking is caused by the thermal heating of the electrons, increasing the beam current increases the shrink rate. Higher acceleration voltage on the contrary increases the electron penetration depth and reduces the electron density causing slower shrinkage. This allows us to fine control the shrink rate and to stop the shrinking process at any desired diameter. We show that a shrunken nanocapillary detects DNA translocation with six times higher signal amplitudes than an unmodified nanocapillary. This will open a new path to detect small and short molecules such as proteins or RNA with nanocapillaries

    Probing the size of proteins with glass nanopores

    Get PDF
    Single molecule studies using nanopores have gained attention due to the ability to sense single molecules in aqueous solution without the need to label them. In this study, short DNA molecules and proteins were detected with glass nanopores, whose sensitivity was enhanced by electron reshaping which decreased the nanopore diameter and created geometries with a reduced sensing length. Further, proteins having molecular weights (MW) ranging from 12 kDa to 480 kDa were detected, which showed that their corresponding current peak amplitude changes according to their MW. In the case of the 12 kDa ComEA protein, its DNA-binding properties to an 800 bp long DNA molecule was investigated. Moreover, the influence of the pH on the charge of the protein was demonstrated by showing a change in the translocation direction. This work emphasizes the wide spectrum of detectable molecules using nanopores from glass nanocapillaries, which stand out because of their inexpensive, lithography-free, and rapid manufacturing proces

    Quasiperiodic Patterns in Boundary-Modulated Excitable Waves

    Get PDF
    We investigate the impact of the domain shape on wave propagation in excitable media. Channelled domains with sinusoidal boundaries are considered. Trains of fronts generated periodically at an extreme of the channel are found to adopt a quasiperiodic spatial configuration stroboscopically frozen in time. The phenomenon is studied in a model for the photo-sensitive Belousov-Zabotinsky reaction, but we give a theoretical derivation of the spatial return maps prescribing the height and position of the successive fronts that is valid for arbitrary excitable reaction-diffusion systems.Comment: 4 pages (figures included

    Integrated guide for public procurement and private contracts of collective catering system and SDGs

    Get PDF
    Surveys (2008-2018) carried out by the Local Health Agency of Trieste (ASUITS) in local collective catering (CC) services of schools, hospitals, nursing homes, and workplaces (25.000 daily meals) have shown some non - adherence to healthier food choices, food standards, procedures and green and social procurement as recommended by the WHO, FAO, UE, Ministry of Health and of Environment. The purpose of this project is to support local public and private organizations in transforming the national and regional catering services food standards related to health, nutrition, environment and social criteria into food procurement and food contracts specifications. This has been done by compiling the major obstacles to improved standards observed during surveys, and by sharing critical and relevant examples with major public contractors across local, regional and national level. The guidelines (GL) for public procurement of CC consist of five chapters: the elaboration of specifications; a response module to present the offer of services; selection and award criteria, an evaluation system of offers, and the technical specifications attached. Technical information fixes the constituent elements of the service in order to have similar and directly comparable offers. GL cover both the purchasing of food and the contracting of catering services. In this way public or private institutions are able to prepare tender documents suitable to respond to health, economic needs and Sustainable Development Goals (SDGs). The development of the GL has increased the awareness and real potential that local organizations have in enhancing the strategic use of purchasers to boost food qualification, jobs, growth and investment. As well as to create a more innovative economy, to be resource and energy efficient, and to be socially-inclusive. To meet population nutrient intake goals and SDGs it is necessary to increase co-operation and the sharing of the objectives of ’Health in All Policies’

    Dynamic Front Transitions and Spiral-Vortex Nucleation

    Full text link
    This is a study of front dynamics in reaction diffusion systems near Nonequilibrium Ising-Bloch bifurcations. We find that the relation between front velocity and perturbative factors, such as external fields and curvature, is typically multivalued. This unusual form allows small perturbations to induce dynamic transitions between counter-propagating fronts and nucleate spiral vortices. We use these findings to propose explanations for a few numerical and experimental observations including spiral breakup driven by advective fields, and spot splitting

    Cement nanotubes: on chemical gardens and cement

    Get PDF
    © 2016 Springer Science+Business Media New York“Do cement nanotubes exist?” is a question that has recently been asked. The answer is yes, they do exist. The evidence is in the literature, in tens of papers showing in detail chemical garden-type tubes in cement from the nanoscale upwards that were published in the 1970s and 1980s. Here, we present a nano-review of the literature

    Theory of spiral wave dynamics in weakly excitable media: asymptotic reduction to a kinematic model and applications

    Full text link
    In a weakly excitable medium, characterized by a large threshold stimulus, the free end of an isolated broken plane wave (wave tip) can either rotate (steadily or unsteadily) around a large excitable core, thereby producing a spiral pattern, or retract causing the wave to vanish at boundaries. An asymptotic analysis of spiral motion and retraction is carried out in this weakly excitable large core regime starting from the free-boundary limit of the reaction-diffusion models, valid when the excited region is delimited by a thin interface. The wave description is shown to naturally split between the tip region and a far region that are smoothly matched on an intermediate scale. This separation allows us to rigorously derive an equation of motion for the wave tip, with the large scale motion of the spiral wavefront slaved to the tip. This kinematic description provides both a physical picture and exact predictions for a wide range of wave behavior, including: (i) steady rotation (frequency and core radius), (ii) exact treatment of the meandering instability in the free-boundary limit with the prediction that the frequency of unstable motion is half the primary steady frequency (iii) drift under external actions (external field with application to axisymmetric scroll ring motion in three-dimensions, and spatial or/and time-dependent variation of excitability), and (iv) the dynamics of multi-armed spiral waves with the new prediction that steadily rotating waves with two or more arms are linearly unstable. Numerical simulations of FitzHug-Nagumo kinetics are used to test several aspects of our results. In addition, we discuss the semi-quantitative extension of this theory to finite cores and pinpoint mathematical subtleties related to the thin interface limit of singly diffusive reaction-diffusion models
    • 

    corecore