623 research outputs found

    How the Patrol System Saves Taxpayers\u27 Money

    Get PDF

    High Resolution X-ray Observations of the Pulsar Wind Nebula Associated with the Gamma-ray Source HESS J1640-465

    Full text link
    We present a Chandra X-ray observation of the very high energy γ\gamma-ray source HESS J1640-465. We identify a point source surrounded by a diffuse emission that fills the extended object previously detected by XMM Newton at the centroid of the HESS source, within the shell of the radio supernova remnant (SNR) G338.3-0.0. The morphology of the diffuse emission strongly resembles that of a pulsar wind nebula (PWN) and extends asymmetrically to the South-West of a point-source presented as a potential pulsar. The spectrum of the putative pulsar and compact nebula are well-characterized by an absorbed power-law model which, for a reasonable NHN_{\rm H} value of 14×1022cm214\times 10^{22} \rm cm^{-2}, exhibit an index of 1.1 and 2.5 respectively, typical of Vela-like PWNe. We demonstrate that, given the H I absorption features observed along the line of sight, the SNR and the H II surrounding region are probably connected and lie between 8 kpc and 13 kpc. The resulting age of the system is between 10 and 30 kyr. For a 10 kpc distance (also consistent with the X-ray absorption) the 2-10 keV X-ray luminosities of the putative pulsar and nebula are LPSR1.3×1033d10kpc2erg.s1L_{\rm PSR} \sim 1.3 \times 10^{33} d_{10 \rm kpc}^{2} \rm erg.s^{-1} and LPWN3.9×1033d102erg.s1L_{\rm PWN} \sim 3.9 \times 10^{33} d_{10}^{2} \rm erg.s^{-1} (d10=d/10kpcd_{10} = d / 10{\rm kpc}). Both the flux ratio of LPWN/LPSR3.4L_{\rm PWN}/L_{\rm PSR} \sim 3.4 and the total luminosity of this system predict a pulsar spin-down power around E˙4×1036ergs1\dot{E} \sim 4 \times 10^{36} \rm erg s^{-1}. We finally consider several reasons for the asymmetries observed in the PWN morphology and discuss the potential association with the HESS source in term of a time-dependent one-zone leptonic model.Comment: 35 pages, 9 figure

    Figures of Merit for Lunar Simulants

    Get PDF
    At an earlier SRR the concept for an international standard on Lunar regolith simulants was presented. The international standard, ISO 10788, Lunar Simulants, has recently been published. This paper presents the final content of the standard. Therefore, we are presenting an update of the following: The collection and analysis of lunar samples from 1969 to present has yielded large amounts of data. Published analyses give some idea of the complex nature of the regolith at all scales, rocks, soils and the smaller particulates commonly referred to as dust. Data recently acquired in support of NASA s simulant effort has markedly increased our knowledge and quantitatively demonstrates that complexity. It is anticipated that future analyses will further add to the known complexity. In an effort to communicate among the diverse technical communities performing research on or research using regolith samples and simulants, a set of Figures of Merit (FoM) have been devised. The objective is to allow consistent and concise comparative communication between researchers from multiple organizations and nations engaged in lunar exploration. This paper describes Figures of Merit in a new international standard for Lunar Simulants. The FoM methodology uses scientific understanding of the lunar samples to formulate parameters which are reproducibly quantifiable. Contaminants and impurities in the samples are also addressed

    Particle Transport in Young Pulsar Wind Nebulae

    Full text link
    The model for pulsar wind nebulae (PWNe) as the result of the magnetohydrodynamic (MHD) downstream flow from a shocked, relativistic pulsar wind has been successful in reproducing many features of the nebulae observed close to the central pulsars. However, observations of well-studied young nebulae like the Crab Nebula, 3C 58, and G21.5--0.9 do not show the toroidal magnetic field on a larger scale that might be expected in the MHD flow model; in addition, the radial variation of spectral index due to synchrotron losses is smoother than expected in the MHD flow model. We find that pure diffusion models can reproduce the basic data on nebular size and spectral index variation for the Crab, 3C 58, and G21.5--0.9. Most of our models use an energy independent diffusion coefficient; power law variations of the coefficient with energy are degenerate with variation in the input particle energy distribution index in the steady state, transmitting boundary case. Energy dependent diffusion is a possible reason for the smaller diffusion coefficient inferred for the Crab. Monte Carlo simulations of the particle transport allowing for advection and diffusion of particles suggest that diffusion dominates over much of the total nebular volume of the Crab. Advection dominates close to the pulsar and is likely to play a role in the X-ray half-light radius. The source of diffusion and mixing of particles is uncertain, but may be related to the Rayleigh-Taylor instability at the outer boundary of a young PWN or to instabilities in the toroidal magnetic field structure.Comment: 13 pages, ApJ, in press, corrected typ

    A Chandra View Of Nonthermal Emission In The Northwestern Region Of Supernova Remnant RCW 86: Particle Acceleration And Magnetic Fields

    Get PDF
    The shocks of supernova remnants (SNRs) are believed to accelerate particles to cosmic ray (CR) energies. The amplification of the magnetic field due to CRs propagating in the shock region is expected to have an impact on both the emission from the accelerated particle population, as well as the acceleration process itself. Using a 95 ks observation with the Advanced CCD Imaging Spectrometer (ACIS) onboard the Chandra X-ray Observatory, we map and characterize the synchrotron emitting material in the northwestern region of RCW 86. We model spectra from several different regions, filamentary and diffuse alike, where emission appears dominated by synchrotron radiation. The fine spatial resolution of Chandra allows us to obtain accurate emission profiles across 3 different non-thermal rims in this region. The narrow width (l = 10''-30'') of these filaments constrains the minimum magnetic field strength at the post-shock region to be approximately 80 {\mu}G.Comment: 7 pages, 3 figures, submitted for publication at the Astrophysical Journa

    Fermi Detection of the Pulsar Wind Nebula HESS J1640-465

    Full text link
    We present observations of HESS J1640-465 with the Fermi-LAT. The source is detected with high confidence as an emitter of high-energy gamma-rays. The spectrum lacks any evidence for the characteristic cutoff associated with emission from pulsars, indicating that the emission arises primarily from the pulsar wind nebula. Broadband modeling implies an evolved nebula with a low magnetic field resulting in a high gamma-ray to X-ray flux ratio. The Fermi emission exceeds predictions of the broadband model, and has a steeper spectrum, possibly resulting from a distinct excess of low energy electrons similar to what is inferred for both the Vela X and Crab pulsar wind nebulae.Comment: 6 pages, 5 figures, accepted for publication in Ap

    A Broadband Study of the Emission from the Composite Supernova Remnant MSH 11-62

    Full text link
    MSH 11-62 (G291.1-0.9) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. The observations suggest a relatively young system expanding into a low density region. Here we present a study of MSH 11-62 using observations with the Chandra, XMM-Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array (ATCA). We identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses as particles diffuse into the outer nebula. Using data from the Fermi LAT, we identify gamma-ray emission originating from MSH 11-62. With density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the gamma-ray emission.Comment: 12 Pages, 12 figures. Accepted for publication in the Astrophysical Journa
    corecore