483 research outputs found

    Size-correlated division of labour and spatial distribution of workers in the driver ant, Dorylus molestus

    Get PDF
    Driver ants ( Dorylus spp.) show a high degree of worker polymorphism. Previous reports suggest that large Dorylus workers are specialised for defensive tasks. In this study, we first quantitatively tested whether there is a size-correlated division of defensive labour among workers. Second, we determined whether the spatial distribution of workers outside the nest can be predicted based on such size-specific differences in task allocation. We show that the division of defensive behaviour among different-sized workers is not strict. However, there is a significant correlation between worker size and the tendency to carry out defensive tasks. First, workers of larger size were more likely than smaller workers to participate in colony defence. Second, larger workers were more frequent near the nest containing the reproducing individuals and the brood. Finally, large workers were more common in open sections of the trail than in covered sections, which are likely to be less exposed to predators

    Standards of lithium monitoring in mental health trusts in the UK

    Get PDF
    Background Lithium is a commonly prescribed drug with a narrow therapeutic index, and recognised adverse effects on the kidneys and thyroid. Clinical guidelines for the management of bipolar affective disorder published by The National Institute for Health and Clinical Excellence (NICE) recommend checks of renal and thyroid function before lithium is prescribed. They further recommend that all patients who are prescribed lithium should have their renal and thyroid function checked every six months, and their serum lithium checked every three months. Adherence to these recommendations has not been subject to national UK audit. Methods The Prescribing Observatory for Mental Health (POMH-UK) invited all National Health Service Mental Health Trusts in the UK to participate in a benchmarking audit of lithium monitoring against recommended standards. Data were collected retrospectively from clinical records and submitted electronically. Results 436 clinical teams from 38 Trusts submitted data for 3,373 patients. In patients recently starting lithium, there was a documented baseline measure of renal or thyroid function in 84% and 82% respectively. For patients prescribed lithium for a year or more, the NICE standards for monitoring lithium serum levels, and renal and thyroid function were met in 30%, 55% and 50% of cases respectively. Conclusions The quality of lithium monitoring in patients who are in contact with mental health services falls short of recognised standards and targets. Findings from this audit, along with reports of harm received by the National Patient Safety Agency, prompted a Patient Safety Alert mandating primary care, mental health and acute Trusts, and laboratory staff to work together to ensure systems are in place to support recommended lithium monitoring by December 2010

    BCL-2 family genetic profiling reveals microenvironment-specific determinants of chemotherapeutic response

    Get PDF
    The Bcl-2 family encompasses a diverse set of apoptotic regulators that are dynamically activated in response to various cell-intrinsic and -extrinsic stimuli. An extensive variety of cell culture experiments have identified effects of growth factors, cytokines, and drugs on Bcl-2 family functions, but in vivo studies have tended to focus on the role of one or two particular members in development and organ homeostasis. Thus, the ability of physiologically relevant contexts to modulate canonical dependencies that are likely to be more complex has yet to be investigated systematically. In this study, we report findings derived from a pool-based shRNA assay that systematically and comprehensively interrogated the functional dependence of leukemia and lymphoma cells upon various Bcl-2 family members across many diverse in vitro and in vivo settings. This approach permitted us to report the first in vivo loss of function screen for modifiers of the response to a front-line chemotherapeutic agent. Notably, our results reveal an unexpected role for the extrinsic death pathway as a tissue-specific modifier of therapeutic response. In particular, our findings show that particular tissue sites of tumor dissemination play critical roles in demarcating the nature and extent of cancer cell vulnerabilities and mechanisms of chemoresistance. Cancer Res; 71(17); 5850–8. ©2011 AACR.National Institutes of Health (U.S.) (NIH RO1 CA128803)National Cancer Institute (U.S.) (Integrated Cancer Biology Program grant NCI 1-U54-CA112967)David H. Koch Institute for Integrative Cancer Research at MIT (Ludwig Fellowship)Massachusetts Institute of Technology. Dept. of Biology (training grant

    Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila

    Get PDF
    The role of juvenile hormone (JH) in regulating the timing and nature of insect molts is well-established. Increasing evidence suggests that JH is also involved in regulating final insect size. Here we elucidate the developmental mechanism through which JH regulates body size in developing Drosophila larvae by genetically ablating the JH-producing organ, the corpora allata (CA). We found that larvae that lack CA pupariated at smaller sizes than control larvae due to a reduced larval growth rate. Neither the timing of the metamorphic molt nor the duration of larval growth was affected by the loss of JH. Further, we show that the effects of JH on growth rate are dependent on the forkhead box O transcription factor (FOXO), which is negatively regulated by the insulin-signaling pathway. Larvae that lacked the CA had elevated levels of FOXO activity, whereas a loss-of-function mutation of FOXO rescued the effects of CA ablation on final body size. Finally, the effect of JH on growth appears to be mediated, at least in part, via ecdysone synthesis in the prothoracic gland. These results indicate a role of JH in regulating growth rate via the ecdysone- and insulin-signaling pathways.National Science Foundation Grants: (IOS-0919855, IOS-084584), Howard Hughes Medical Institute, Fundação Calouste Gulbenkian, FCT : [SFRH/Bolsas de Pós-Doutoramento (BPD)/74313/2010]

    Characterisation of peroxide crosslinked polyethylene

    Get PDF
    British Gas have been using polyethylene pipe and fittings for gas distribution since 1969. The medium density, and more recently high density polyethylene pipes are produced by a simple and well established extrusion process. Unfortunately the production of fittings, especially large diameter fittings is not so simple. Traditionally pipe fittings are made from either injection moulding or by other fabrication techniques which require subsequent cutting and welding of different parts to produce the finished article. Recently however the methodology has been developed to facilitate the production of fittings by rotational moulding. Incorporated into the new methodology is the ability to produce crosslinked fittings by peroxide inclusion. Crosslinking of the pipe fittings has a major advantage in that it produces a substantial improvement in the mechanical properties of the polymer. Of particular importance is the improvement in stress crack resistance. Stress cracking is presently the primary mode of failure in polyethylene pipelines. Cross linking should help to reduce the susceptibility of the pipeline to failure by this method. The purpose of this project has been to investigate the crosslinking process in two rotational moulding grades of polyethylene. In particular a study has been made of the relationships between various chemical and physical properties, and of how these change upon material modification. A series of compression moulded samples containing increasing levels of peroxide have been produced for both polymers. Characterisation of these samples was undertaken using such techniques as Differential Thermal Analysis, Fourier Transform Infrared Spectroscopy, Gel Permeation Chromatography, Gel Content and Microscopy. The results have shown that as peroxide concentration is increased gel content rises sharply before reaching a maximum value. In contrast to the gel content, the crystallinity of the samples was shown to decrease. Infrared analysis provided the facility to monitor the variation in molecule end group concentration with changing peroxide levels. It was found that increasing the level of peroxide resulted in a decrease in the concentration of terminal vinyl unsaturation in an inverse relationship to gel content results. Subsequent gel permeation chromatography analysis demonstrated that the terminal vinyl groups were being lost in a chain extension mechanism which resulted in an increase in the molecular weight of the samples

    Colony-level differences in the scaling rules governing wood ant compound eye structure

    Get PDF
    Differential organ growth during development is essential for adults to maintain the correct proportions and achieve their characteristic shape. Organs scale with body size, a process known as allometry that has been studied extensively in a range of organisms. Such scaling rules, typically studied from a limited sample, are assumed to apply to all members of a population and/or species. Here we study scaling in the compound eyes of workers of the wood ant, Formica rufa, from different colonies within a single population. Workers' eye area increased with body size in all the colonies showing a negative allometry. However, both the slope and intercept of some allometric scaling relationships differed significantly among colonies. Moreover, though mean facet diameter and facet number increased with body size, some colonies primarily increased facet number whereas others increased facet diameter, showing that the cellular level processes underlying organ scaling differed among colonies. Thus, the rules that govern scaling at the organ and cellular levels can differ even within a single population

    New Frontiers for Organismal Biology

    Get PDF
    Understanding how complex organisms function as integrated units that constantly interact with their environment is a long-standing challenge in biology. To address this challenge, organismal biology reveals general organizing principles of physiological systems and behavior—in particular, in complex multicellular animals. Organismal biology also focuses on the role of individual variability in the evolutionary maintenance of diversity. To broadly advance these frontiers, cross-compatibility of experimental designs, methodological approaches, and data interpretation pipelines represents a key prerequisite. It is now possible to rapidly and systematically analyze complete genomes to elucidate genetic variation associated with traits and conditions that define individuals, populations, and species. However, genetic variation alone does not explain the varied individual physiology and behavior of complex organisms. We propose that such emergent properties of complex organisms can best be explained through a renewed emphasis on the context and life-history dependence of individual phenotypes to complement genetic data.Organismic and Evolutionary Biolog

    Isothiocyanates are detected in human synovial fluid following broccoli consumption and can affect the tissues of the knee joint

    Get PDF
    Osteoarthritis is a major cause of disability and there is no current pharmaceutical treatment which can prevent the disease or slow its progression. Dietary advice or supplementation is clearly an attractive option since it has low toxicity and ease of implementation on a population level. We have previously demonstrated that sulforaphane, a dietary isothiocyanate derived from its glucosinolate precursor which is found in broccoli, can prevent cartilage destruction in cells, in in vitro and in vivo models of osteoarthritis. As the next phase of this research, we enrolled 40 patients with knee osteoarthritis undergoing total knee replacement into a proof-of-principle trial. Patients were randomised to either a low or high glucosinolate diet for 14 days prior to surgery. We detected ITCs in the synovial fluid of the high glucosinolate group, but not the low glucosinolate group. This was mirrored by an increase in ITCs and specifically sulforaphane in the plasma. Proteomic analysis of synovial fluid showed significantly distinct profiles between groups with 125 differentially expressed proteins. The functional consequence of this diet will now be tested in a clinical trial

    Identifying chondroprotective diet-derived bioactives and investigating their synergism

    Get PDF
    Osteoarthritis (OA) is a multifactorial disease and nutrition is a modifiable factor that may contribute to disease onset or progression. A detailed understanding of mechanisms through which diet-derived bioactive molecules function and interact in OA is needed. We profiled 96 diet-derived, mainly plant-based bioactives using an in vitro model in chondrocytes, selecting four candidates for further study. We aimed to determine synergistic interactions between bioactives that affected the expression of key genes in OA. Selected bioactives, sulforaphane, apigenin, isoliquiritigenin and luteolin, inhibited one or more interleukin-1-induced metalloproteinases implicated in OA (MMP1, MMP13, ADAMTS4, ADAMTS5). Isoliquiritigenin and luteolin showed reactive oxygen species scavenging activity in chondrocytes whereas sulforaphane had no effect and apigenin showed only a weak trend. Sulforaphane inhibited the IL-1/NFκB and Wnt3a/TCF/Lef pathways and increased TGFβ/Smad2/3 and BMP6/Smad1/5/8 signalling. Apigenin showed potent inhibition of the IL-1/NFκB and TGFβ/Smad2/3 pathways, whereas luteolin showed only weak inhibition of the IL-1/NFκB pathway. All four bioactives inhibited cytokine-induced aggrecan loss from cartilage tissue explants. The combination of sulforaphane and isoliquiritigenin was synergistic for inhibiting MMP13 gene expression in chondrocytes. We conclude that dietary-derived bioactives may be important modulators of cartilage homeostasis and synergistic relationships between bioactives may have an anti-inflammatory and chondroprotective role

    The Effect of Genetic and Environmental Variation on Genital Size in Male Drosophila: Canalized but Developmentally Unstable

    Get PDF
    The genitalia of most male arthropods scale hypoallometrically with body size, that is they are more or less the same size across large and small individuals in a population. Such scaling is expected to arise when genital traits show less variation than somatic traits in response to factors that generate size variation among individuals in a population. Nevertheless, there have been few studies directly examining the relative sensitivity of genital and somatic traits to factors that affect their size. Such studies are key to understanding genital evolution and the evolution of morphological scaling relationships more generally. Previous studies indicate that the size of genital traits in male Drosophila melanogaster show a relatively low response to variation in environmental factors that affect trait size. Here we show that the size of genital traits in male fruit flies also exhibit a relatively low response to variation in genetic factors that affect trait size. Importantly, however, this low response is only to genetic factors that affect body and organ size systemically, not those that affect organ size autonomously. Further, we show that the genital traits do not show low levels of developmental instability, which is the response to stochastic developmental errors that also influence organ size autonomously. We discuss these results in the context of current hypotheses on the proximate and ultimate mechanisms that generate genital hypoallometry
    corecore