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Understanding how complex organisms function and interact as integrated units with their 

environment is a long-standing challenge in biology. To address this challenge, organismal 

biology aims to reveal general organizing principles of physiological systems and behavior—in 

particular, in complex multicellular animals. Organismal biology also focuses on the role of 

individual variability in the evolutionary maintenance of diversity. To broadly advance these 

frontiers, cross-compatibility of experimental designs, methodological approaches, and data 

interpretation pipelines represents a key prerequisite. It is now possible to rapidly and 

systematically analyze complete genomes to elucidate genetic variation associated with traits 

and conditions that define individuals, populations, and species. However, genetic variation 

alone does not explain the varied individual physiology and behavior of complex organisms. We 

propose that such emergent properties of complex organisms can best be explained through a 

renewed emphasis on the context and life-history dependence of individual phenotypes as a to 

complement genetic data. 
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The organism is the central unit for integration of both of the major determinants of biological 

form and function—genes and the environment (Lewontin 2000). However, over the past several 

decades, the focus of biology has shifted considerably to studying genes rather than organisms 



 

	
  

by moving in two directions simultaneously. Moving outward from the organism toward 

broadscale evolutionary issues, the synthesis of Mendelian genetics with Darwinian theory led to 

a creative focus on mathematics, modeling, and theoretical approaches, giving birth to 

population and quantitative genetics. Moving inward from the organism toward cellular and 

molecular biology, reductionist experimental approaches based on DNA technologies allowed 

the experimental dissection of cause–effect relationships between individual genes and their 

contribution to cellular and higher-level structure and function. These two movements resulted in 

many of the monumental discoveries and advances that define the current state of biology. 

However, they also led to an eclipse of the organism by the gene as the fundamental unit of 

biology. 

 A focus on the gene will continue to be a major pillar of biology. In addition, the two 

broad gene-oriented lines of study outlined above, together with technological advances, have 

generated extensive fundamental knowledge that now has us superbly positioned for “returning 

to the organism” (Stillman et al. 2011). The challenge is to extend, integrate, and exploit the 

insights from “outward” and “inward” gene-oriented biology to develop a deeper understanding 

of individual organisms’ higher-order emergent characteristics, such as epigenetic mechanisms 

and complex physiological and behavioral traits, including intelligence. For instance, we need to 

better understand how individual variation in complex physiological and behavioral 

characteristics or traits influences ecological and evolutionary processes (Autumn et al. 2002, 

Gerhart and Kirschner 2007). Facing this broad challenge requires cross-fertilization and 

integration across traditionally disparate fields of biology, including developmental biology, 

physiology, microbiology, behavioral biology, neuroscience, phylogenetics, and ecology, and 

also requires the application of computationally intensive technologies to the emergent traits of 

the organism (Ungerer et al. 2008). These disciplines are already developing stronger bonds 

among one another because of their collective growing appreciation of the importance of the 

individual organism as a fundamental unit of study (Wake 2008). 

 Organisms and their complex phenotypes represent the units on which selection acts 

through fitness criteria during the dynamic process of evolution. Therefore, an overarching task 

for biologists is to properly understand how a specific subset of phenotypes arises from the vast 

repertoire of possible phenotypes that are in principle attainable from any single genome. To 

advance this frontier, the principles that govern how the development and life histories of 



 

	
  

organisms are shaped by the interplay between genes and the environment need to be elucidated 

(Callahan et al. 1997, West-Eberhard 2005). A renewed emphasis on organismal biology will 

reveal the relative roles of exposures to particular environments at different life stages in 

producing a specific phenotype from the possible repertoire encoded in the genome. It will also 

provide insight into mechanisms of epigenetic programming, maternal transfer, and phenotypic 

plasticity that are crucial for determining complex phenotypes (Müller and Newman 2005). A 

stronger focus on the organism as a unit of study is crucial for understanding how complex 

phenotypes emerge during development and subsequent life-history stages of individuals. 

 Whole-animal biology is uniquely positioned to contribute in a substantive way to 

understanding the influence of life-history experiences and exposures on the processes by which 

genetic information is decoded into specific physiologies and behaviors. Such knowledge has 

potentially great relevance for conservation efforts, biodiversity, bioindication, and diagnostic 

phenotyping in basic biology, medicine, and agriculture. The wealth of behavioral, 

biomechanical and physiological data on many animal species could reveal novel principles of 

multicellular animal structure and function. However, intuitive integration of these data with the 

large and growing base of genetic and molecular information, paralleling significant progress 

made along those lines in the plant sciences, remains fragmentary for animals other than a few 

model species. Even though some encouraging and significant efforts toward wider integration 

are ongoing in animal biology—for example, in biomechanics (Ateshian and Friedman 2009)—

they need to be extended to include a much broader spectrum of animals and subdisciplines. 

Increased emphasis on such efforts might reveal fundamental design principles that are common 

to all multicellular organisms, which would enhance the potential for applications of that 

knowledge to develop downstream societal benefits (in, e.g., biomedicine, agriculture, 

biomimetics, robotics). In the present article, we highlight some important opportunities and 

challenges for harnessing the full potential of available scientific knowledge and technological 

toolboxes to aid the study of the biology of complex organisms in the coming decade. 

 

Context dependence of organismal life-history trajectories 

Predicting how organisms will respond to adversity and adapt to environmental change is one of 

the overarching ambitions of contemporary biology, spanning both the applied and the 

theoretical domains. An urgent need in the context of global change, including climate shifts, 



 

	
  

human disturbance, acute environmental disasters, and invasive species, is to gain an 

understanding of integrated organismal responses to environmental change on very different time 

scales (e.g., minutes to hours, within an organism’s life span, or spanning multiple generations). 

More knowledge is needed on how organisms respond to acute, catastrophic, and extreme 

environmental events, including events such as tsunamis, earthquakes, volcanic eruptions, 

hurricanes, floods, and extreme thermal events. Such acute events are predicted to increase in 

frequency as a result of climate change and anthropogenic pollution of Earth’s atmosphere and 

oceans (van Aalst 2006, Yasuhara et al. 2011). Biological responses to acute environmental 

change are based on molecular, physiological, and behavioral mechanisms that rapidly confer 

plasticity to organismal phenotypes in order to maximize their coping ability under those 

conditions (Kültz 2005, Wingfield 2012). A central question concerns the determinants of 

plasticity during changing environmental and social circumstances—that is, to what extent prior 

life-history experiences and exposures relative to genetic factors influence coping ability. 

Arguably, the best context for such comparative biological inquiry is the individual organism 

(figure 1). 

[Typesetter: Place figure 1 about here.] 

 Comparative analyses of how individuals respond to environmental perturbation and 

social challenges are also of interest in the context of evolutionary medicine (Stearns 2012) and 

with regard to an organism’s microbial symbionts, which have coevolved in close association 

with their hosts (McFall-Ngai et al. 2013). Moreover, the mechanisms and extent to which 

organismal plasticity alters the patterns of variation available to natural selection must be 

investigated on a broader scale and in greater depth (West-Eberhard 2005). On timescales 

spanning multiple generations, gradual environmental changes such as global warming alter the 

genomes of populations and species through the effects of differential selection on organismal 

phenotypes encoded by nonneutral genes. An increasing number of examples show how 

biologists use phylogenetic patterns and comparisons of contemporary and historical information 

on the phenology and distribution of organisms to understand and predict the effects of gradual 

processes such as climate change on populations (Willis et al. 2008). Overall, however, we still 

know far too little about how the two basic mechanisms of environmental acclimation and 

adaptation are used by diverse organisms to be able to explain why some populations and species 

are better than others at coping with acute, extreme, or long-term and gradual environmental 



 

	
  

change. Understanding the basis for such differences and the evolutionary trade-offs that 

counterbalance coping ability in well-suited model organisms will also provide insights into 

human evolution and medicine. 

 High-dimensional organismal phenotyping (i.e., the analysis of many phenotypic 

parameters at high spatiotemporal resolution) is required to understand short- and long-term 

adaptive responses to environmental adversity and change. In evolutionary theory, high 

phenotypic dimensionality may provide the solution to understanding how organisms are able to 

cross from peak to peak in adaptive landscapes, sliding around apparent fitness barriers 

(Gavrilets 1999, Pigliucci 2008). In human health and development, data-intensive “omics”-

based analyses across the life span of individuals may reveal the mechanistic basis for the 

phenomena of biological embedding (Hertzman and Boyce 2010, Szyf 2011) and predictive 

adaptive responses (Bateson et al. 2004, Gluckman et al. 2005). Biological embedding and 

predictive adaptive responses reflect the influence of earlier life experiences on phenotypes at 

later stages of life (figure 1). The underlying concept is that the physiological and behavioral 

phenotypes of any organism are contingent on and can be explained by its prior life history (in 

addition to its genetic predisposition). In the context of climate change and anthropogenic 

pollution, incorporating the flexible coping abilities of individuals and the capacity for genetic 

change into population-level models may improve the predictive accuracy of these models 

(Farrell et al. 2008). Moreover, researchers in the health sciences, having abandoned the notion 

of “disease genes,” increasingly examine the genetic basis for individual differences in 

susceptibility to environmental influences and thus actively explore the genomic constraints on 

plasticity that underlie biological embedding and predictive adaptive responses. These trends will 

provide data sets of clear relevance for issues central to biology. 

 It is daunting to confront the difficulties of collecting and analyzing the complex, high-

dimensional data sets needed to describe an organism’s phenotype at the necessary 

spatiotemporal resolution to understand the interplay between genes and the environment in 

shaping the physiology and behavior of complex organisms. Despite the fact that we are now 

able to rapidly determine any individual’s complete genotype, when it comes to phenotyping, the 

reality is all too often “not far removed from previous generations, who took out the calipers, 

made a single measurement, and wrote it down in a notebook with a pencil” (Houle 2010, 

p. 1793). Although significant progress in developing high-throughput phenotyping approaches 



 

	
  

for some organisms is being made (Mahner and Kary 1997, Freimer and Sabatti 2003), this is an 

area of great opportunity for future biology research. Increasingly, it is feasible to bring the lab to 

the field and study organisms in their natural environments, where their exposures and 

experiences differ from those in artificial lab environments (e.g., Dechmann et al. 2011, 

Gagliardo et al. 2011). For instance, telemetric applications using micro- or nanosensors allow 

high-throughput approaches for phenotyping and environmental-exposure assessment of many 

individuals in diverse environments (Houle 2010, Robinson et al. 2010). In parallel, 

technological advances enhance opportunities for the simulation of more realistic natural 

environments in the laboratory to isolate particular environmental parameters of interest and to 

study their effects on organisms in great depth. Examples that illustrate these emerging 

opportunities include the use of machine vision algorithms to generate ethograms of many 

individuals in social groups (Branson et al. 2009), microsensors for motion analysis combined 

with statistical methods to define behavioral sequences from continuous data (Braun et al. 2010), 

methodological advances in morphometrics to characterize multivariate organismal features that 

determine shape (Zelditch et al. 2009, Klingenberg 2010), segmental analysis of iterative 

subroutines in exploratory behavior in mice (Benjamini et al. 2011), and computer-supported 

analysis of the developmental trajectories in bird song learning (Lipkind and Tchernichovski 

2011) and culture (Fehér et al. 2009). 

 Collecting and organizing high-dimensional data sets can lead to a new level of 

knowledge. An example is the burgeoning mapping of neuronal networks in the brain, using 

functional imaging in humans (Biswal et al. 2010) and high-resolution structural mapping in the 

simpler insect nervous system (Chiang et al. 2011). Computational models based on these data 

sets are already predicting novel whole-organism behaviors (Wessnitzer et al. 2012). Another 

example pertains to the application of proteomics technology, which has developed to such a 

state that it allows the comprehensive characterization of molecular phenotypes of diverse tissues 

and cell types of complex organisms (Cox and Mann 2011). This technology platform promises 

great potential for high-throughput phenotyping, because proteins are the main molecular 

determinants of phenotype whose abundances are modulated by environmental conditions at 

numerous levels of regulation (Schwanhäusser et al. 2011). In addition, specific protein 

posttranslational states, subcellular and tissue-specific compartmentalization, and the 

composition of multiprotein complexes all reflect the history of prior exposure to particular 



 

	
  

developmental and environmental conditions (Weckwerth 2011, Diz et al. 2012). Therefore, 

proteomics represents a promising toolbox for opening the window into an organism’s record of 

environmental exposures and experiences. 

 Basic research targeting the overarching principles and mechanisms of coping, 

acclimation, and adaptation in the face of a changing environment continues to take advantage of 

existing life strategies and adaptations in particular species. This approach, which is based on 

August Krogh’s principle, emphasizes that there are species especially well suited to address 

nearly any problem in biology (Krebs 1975). In using this approach, biologists reveal 

fundamental mechanisms that enable a particular species to thrive under conditions that would be 

lethal or that would cause severe disease in humans or most other species. Knowledge of such 

mechanisms is of fundamental importance for better understanding the biological principles on 

which life is founded, and it entails obvious potential for applications in human medicine, 

agriculture, and conservation management (Carey et al. 2012). For instance, Antarctic ice fish 

with no hemoglobin provide a convenient evolutionary example that does not have to be 

artificially engineered to enable the study of the implications of hemoglobin for organismal 

responses to environmental challenges (Pörtner et al. 2007). The interaction of complex 

organisms with the environment requires study in a context-dependent manner on a 

spatiotemporal scale of sufficient resolution to permit the generation of novel insights into the 

biological principles that govern such interactions (figure 1). Given that such studies will include 

a wide variety of species, it will be possible to draw general conclusions and extrapolate 

knowledge to population, clade, and community levels. Achieving progress toward this 

ambitious goal requires investments into visionary longer-term research. 

 

Importance of individual variability for evolutionary maintenance of diversity 

An important element that needs stronger emphasis in contemporary biology is the individuality 

of organisms. It is crucial to realize the importance of individual variation, which is far greater at 

the level of the phenotype relative to the genotype, because each individual has its own unique 

record of life-history exposures and experiences. This path has been established in 

developmental psychology and physiology, which provides examples in which the study of 

individual differences has spawned rather than complicated the development of integrative 

frameworks. For many biologists, however, embracing individual variation is not trivial and 



 

	
  

represents a significant shift in perspective. 

 Mechanistic approaches to biology have typically worked under the assumption that, for 

any given trait, there is a common reaction norm, and variations from this norm are often viewed 

as experimental or statistical noise. Much of experimental biology has aspired to reduce the 

effects of individual variation and to focus explicitly on the determination of mean values to 

distill complex phenomena into interpretable entities at the expense of information on individual 

variation. Even at the cellular level, it is becoming evident that no two cells are alike, and it is 

increasingly recognized that such variability is of great importance for tissue differentiation 

during development (Gerhart and Kirschner 2007, Pelkmans 2012). Moreover, clonal lab-reared 

organisms or highly inbred models, such as certain strains of mice, display “unexpected” 

phenotypic variation (Crabbe et al. 1999), such that the very concept of a type specimen or a wild 

type has been called into question (Mayr 1996, Parichy 2005). In addition, the vulnerability or 

resilience of populations to environmental change is a function of the genetic diversity of the 

individuals constituting the population (Hoffmann and Sgrò 2011). In fact, individuals with 

genotypes that deviate the most from the population mean are often founders of better-adapted 

populations when the environment changes (Kellermann et al. 2009). A renewed emphasis on 

individual trait values (in addition to population sampling means) is crucial for assessing the 

linkages between different traits and the effect of the environment on individual variability. This 

task will benefit greatly from leveraging high-throughput technologies for genotyping, 

genomewide epigenetic analysis of chromatin in individual organisms, and comprehensive high-

throughput phenotyping. 

 The importance of individual variation in evolution is perhaps most apparent for 

behavior, because behavior has long been thought to be at the leading edge of evolutionary 

change (Mayr 1963). Traditional approaches that identify the mean behavioral tendencies 

associated with specific genotypes (e.g., quantitative trait loci, genomewide association, human 

twin studies) have documented multigenic influences for almost all behavioral traits, with each 

gene contributing small effects (Flint 2003, Kendler and Greenspan 2006). By leveraging high-

throughput technology platforms, it is now possible to tease apart the mechanistic differences 

that underlie specific phenotypes associated with individual variation in behavior. Genomic 

studies have begun to characterize individual variation in behavioral phenotypes by identifying 

suites of genes that are dynamically expressed in specific environmental (Whitfield et al. 2003) 



 

	
  

or social (Cummings et al. 2008, Ramsey et al. 2012) contexts. The range of behavioral 

influences associated with specific genes can now be studied in a much broader context, taking 

into account a more comprehensive array of genomic and life-history backgrounds. Combining 

high-throughput profiling methods with reverse genetics approaches in individuals with specific 

genomes and life histories will allow biologists to understand how genetic polymorphisms and 

environmental exposures contribute to behavioral phenotypes. 

 

Development of the organismal biology community 

A larger and more coherent community of biologists who are proficient in both physiological and 

behavioral whole-organism approaches and in high-throughput genotyping, epigenotpying, and 

phenotyping technologies is needed to propel organismal biology forward. In addition, students 

and postgraduate researchers should be given appropriate and state of the art training in the 

mathematical, analytical, and computational skills that are necessary to comprehend key features 

for the standardization and analysis of the complex data sets generated by high-dimensional 

phenotyping technologies. Such training will be crucial for developing a community of 

organismal biologists that is highly interactive and that can vigorously, creatively, and 

dynamically communicate and collaborate with computer scientists, analytical chemists, 

engineers, and experts from other areas that continue to develop new and innovative toolboxes 

for organismal biology. 

 Collaborative research in which complementary skill sets of different types of scientists 

(e.g., biologists, computer scientists) can be brought together in a creative and productive way 

will benefit from a stronger cross-disciplinary basic training of organismal biologists. Such 

training should reveal areas and opportunities for cross-fertilization with other scientific 

disciplines by providing a broad, basic understanding of the current and rising trends and 

capabilities in other fields. A renewed focus on organismal biology is inevitably 

interdisciplinary, and it faces all of the well-known challenges of interdisciplinary research. 

 There is also a need to identify opportunities for advancing our theoretical understanding 

and intellectual base to a point at which the design of better, more powerful, more holistic, and 

more integrative approaches is possible. Characterization and in-depth analyses of diverse 

phenotypic measures (e.g., molecular, morphological, physiological, behavioral) represents an 

absolute prerequisite for the discovery of the algorithms that describe how order emerges in 



 

	
  

complex biological systems (Grimm et al. 2005). Accomplishing such comprehensive 

phenotyping for many individuals across a large number of species will require strongly 

interdisciplinary efforts. 

 Research centers or intellectual focus groups that act as hubs for fostering collaboration 

on specific projects among scientists with diverse research backgrounds, ideas, and technological 

expertise would facilitate this endeavor. Such centers could provide cross-disciplinary training to 

investigators and could allow for better and more efficient integration of high-throughput 

technologies focused on molecular building blocks (i.e., genes, transcripts, proteins, and 

metabolites) with studies on the function and responses of complex whole organisms to changing 

internal and external environments. Examples of initiatives in the United States that could serve 

as models or nucleation points for such centers include iPlant (Stanzione 2011), NESCent (the 

National Evolutionary Synthesis Center; www.nescent.org), NCEAS (the National Center for 

Ecological Analysis and Synthesis; Reichmann 2004), and NIMBioS (the National Institute for 

Mathematical and Biological Synthesis; www.nimbios.org). These centers have been highly 

successful in bringing together scientists with diverse backgrounds and providing 

interdisciplinary training. They have already generated many invaluable resources, including 

freely accessible data-processing, deposition, and visualization tools. Corresponding research 

hubs focused on specific timely aspects of whole-organism biology (e.g., organismal responses 

to natural disasters, pollution, climate change) could serve to reshape the diverse community of 

organismal biologists to be more inclusive of the interdisciplinary collaborations needed for 

future progress. The anticipated payoffs of this inclusive approach promise to add new theories 

about organisms to basic biological theory and to advance applied science by providing a deeper 

understanding of how organisms cope with change, challenge, and opportunity—issues of 

widespread importance in society, sustainability, medicine, and the culture of our world. 

 

Development of technology, cyberinfrastructure, and computational tools 

In addition to community development, better and more widely accessible technologies for large-

scale rapid phenotyping in physiologically relevant environments are urgently needed to leverage 

the full potential of organismal biology. For instance, miniaturized and remotely controlled 

environmental sensors for collecting relevant environmental data over long periods of time in 

natural environments are needed to understand how specific environmental exposures influence 



 

	
  

organismal traits, physiological responses, and complex behaviors. In this case, as well as in 

others, partnerships and collaborations between academic researchers and industry or businesses 

should be encouraged in order to most efficiently advance the development and wide distribution 

of much-needed tools. New and more effective approaches for linking various phenotypes to 

fitness are also needed. This linkage is currently very difficult and can be accomplished only 

with a focus on whole organisms, because fitness is ultimately a measure of the reproductive 

success of an individual. Although a focus on model organisms is necessary in some cases, the 

development of toolboxes for organismal biology should be more inclusive and widely 

applicable to a greater number of species to promote larger-scale comparative approaches. 

 Another area of technology development needed to propel organismal biology involves 

large-scale phenotypic data storage, accessibility, and computability. Whole-organism data 

provide two major challenges to the existing infrastructure. First, phenotypic data are typically 

complex, heterogeneous, and high dimensional. Phenotypic data sets of high spatiotemporal 

resolution that account for individual variation are needed to learn how particular environmental 

exposures and experiences at diverse stages of life history influence an organism’s traits. 

Moreover, we need high-dimensional data sets in order to understand how such variability in the 

traits of individuals is reflected at population, community, and society levels. In particular, 

physiological and behavioral data and the associated approaches for their acquisition are much 

more heterogeneous and diverse than are genetic or morphological data. 

 Therefore, highly flexible data portals and storage solutions that are not restrictive with 

regard to data structures are urgently needed for accelerating future biology. The Dryad data 

repository (http://datadryad.org) provides a useful model for capturing and preserving primary 

biological data in which data deposition is integrated into the journal publication process. Dryad 

has a flexible interface that allows both the flexible deposition of data in any format with 

minimal metadata requirements and coordinated deposition with other repositories that require 

structured data types (e.g., Genbank, TreeBASE). Another potential model is the Tranche 

repository (Hill et al. 2010), which allows the submission of data without predefined formatting 

requirements. Prepublication data can be password protected to limit access, and a hash code is 

provided for each data record to facilitate peer-review and data referencing in journals. Data can 

be downloaded as raw data or visualized through freely distributed viewers (e.g., the Scaffold 

viewer, the PEAKS viewer; Searle 2010, Zhang et al. 2012). These solutions will require an 



 

	
  

enormous storage capacity and a significant investment in the maintenance and management of 

the associated cyberinfrastructure, as well as in data curation. 

 A second major challenge is the analysis and computability of phenotypic data. Better 

computational tools are needed to reduce the high dimensionality of phenotypic data sets into 

intuitive and interpretable units. Although flexible data formats and metadata standards are 

important for the a priori capture and documentation of heterogeneous and innovative primary 

phenotypic data, it is equally crucial to develop and regularly update appropriate data standards. 

The lack of data standards for many behavioral, physiological, and other phenotypes is a major 

limitation to integration in organismal biology, because it hinders efficient data interpretation 

and synthesis. Concerned mainly with fish, the Phenoscape project (www.phenoscape.org) 

provides a useful example and model for the development of the data structures, ontologies 

(structured semantics), and cyberinfrastructure that relate the anatomical and developmental 

phenotypes, molecular genotypes, and evolutionary taxonomies. Another excellent example is 

the PRIDE (Proteomics Identifications Database) repository (www.ebi.ac.uk/pride), which 

provides flexible solutions for the conversion, quality control, and visualization of heterogeneous 

proteomics data (Wang et al. 2012). The challenges are as much cultural as they are technical: 

Communities of organismal biologists must collectively develop and agree on common standards 

for terminology and data structures. This will be a particular challenge as organismal biologists 

increasingly extend genomic, proteomic, and related approaches to a much broader spectrum of 

species. These advances will also require the continuous development of data analysis tools for 

novel formats that are emerging and in high demand. In that regard, the iPlant initiative is one 

step in the right direction and serves as a platform on which to build in the future (Stanzione 

2011). Increased digitization of phenotypic and environmental data, which is possible through 

new museum specimen data portals such as Arctos (http://arctosdb.org), will also allow easier 

access to heterogeneous data associated with organisms and environments. 

 

Conclusions 

The strong focus of biology over the last 50 years on gene-oriented approaches has generated a 

solid foundation for studying the mechanisms that determine the phenotypic diversity of complex 

organisms from a new perspective. Research on how the phenotypes of complex organisms 

emerge as a result of gene–environment interactions has great potential to reveal novel principles 



 

	
  

that determine fundamental morphology, physiology, and behavior (Bartholomew 2005). Such 

studies are necessary to understand how the complex properties of higher-order biological 

systems emerge from simpler building blocks (Pigliucci 2003). Advancing our knowledge of the 

principles governing the biology of complex organisms requires the study of individual 

organisms in the context of specific environments and consideration of their unique 

environmental exposures and experiences over the course of their lives (Lauffenburger 2012). 

Because of the heterogeneity and high dimensionality of phenotypic data sets, it is necessary to 

foster community and technology development in the area of organismal biology. Cross-

disciplinary training, effective avenues for interdisciplinary communication, and biological 

databases that span the genotype–phenotype continuum will be key for the development of a 

stronger community of biologists who focus their efforts on integrating the diverse facets of 

whole-organism biology. Important foci for technology development efforts include better 

tracking technologies for monitoring organisms and the associated environmental variables in 

their natural habitats, more powerful and widely accessible high-throughput phenotyping tools, 

and a flexible and dynamic cyberinfrastructure framework for large-scale phenotypic data sets. 

Promising developments in all of these areas are already under way, and intensifying these 

efforts will advance the biology of complex organisms to a higher level. 
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[Typesetter: In figure 1, please add a closing parenthesis after “exposures”.] 

Figure 1. The three principal factors defining organismal phenotypes are the genotype of the 

individual, the environment in which the individual is embedded, and the life history 

experienced by the individual. The life history represents the sequence of environmental 

exposures during the course of the individual’s life—in particular, during early 

development—which are recorded as cellular and higher forms of memory. Organisms 

themselves, through the expression of their individual phenotypes, influence the environment 

and the propensity for recording life-history events (which depends on the capacity and modes 



 

	
  

of memorizing those events). 


