262 research outputs found

    Loss of genetic diversity and inbreeding in Kashmir red deer (Cervus elaphus hanglu) of Dachigam National Park, Jammu & Kashmir, India

    Get PDF
    BACKGROUND: Hangul (Cervus elaphus hanglu), the eastern most subspecies of red deer, is now confined only to the mountains in the Kashmir region of Jammu & Kashmir State of India. It is of great conservation significance as this is the last and only hope for Asiatic survivor of the red deer species in India. Wild population of free ranging hangul deer inhabiting in and around Dachigam National Park was genetically assessed in order to account for constitutive genetic attributes of hangul population using microsatellite markers. RESULTS: In a pool of 36 multi-locus genotypes, 30 unique individuals were identified based on six microsatellite loci. The estimated cumulative probability of identity assuming all individuals were siblings (P(ID) sibs) was 0.009 (9 in 1000). Altogether, 49 different alleles were observed with mean (± s.e.) allelic number of 8.17 ± 1.05, ranging from 5 to 11 per locus. The observed heterozygosity ranged between 0.08 and 0.83, with mean 0.40 ± 0.11 and the inbreeding coefficient ranged between −0.04 and 0.87 with mean 0.38 ± 0.15. Majority of loci (5/6) were found to be informative (PIC value > 0.5). All loci deviated from Hardy-Weinberg equilibrium except Ca-38 (P > 0.05) and none of the pairs of loci showed significant linkage disequilibrium except the single pair of Ca-30 and Ca-43 (P < 0.05). CONCLUSIONS: The preliminary findings revealed that hangul population is significantly inbred and exhibited a low genetic diversity in comparison to other deer populations of the world. We suggest prioritizing the potential individuals retaining high heterozygosity for ex situ conservation and genetic monitoring of the hangul population should be initiated covering the entire distribution range to ensure the long term survival of hangul. We speculate further ignoring genetics attributes may lead to a detrimental effect which can negatively influence the reproductive fitness and survivorship of the hangul population in the wild

    Case studies on heat stress related perceptions in different industrial sectors in southern India

    Get PDF
    Linkages between thermal loads and its physiological consequences have been widely studied in non-tropical developed country settings. In many developing countries like India, despite the widespread recognition of the problem, limited attempts have been made to estimate health impacts related to occupational heat stress and fewer yet to link heat stress with potential productivity losses. This is reflected in the ubiquity of workplaces with limited or no controls to reduce exposures. As a prelude to understanding the feasibility of alternative interventions in different industrial sectors, we present case studies from 10 different industrial units in Tamil Nadu, Chennai, which describe perceptions of occupational heat stress among the workers and supervisors/management

    Identification of potential serum biomarkers of glioblastoma: serum osteopontin levels correlate with poor prognosis

    Get PDF
    Background: The aim of this study is to identify serum biomarkers with classification and prognosis utility for astrocytoma, in particular glioblastoma (GBM). Methods: Our previous glioma microarray database was mined to identify genes that encode secreted or membrane-localized proteins. Subsequent analysis was done using significant analysis of microarrays, followed by reverse transcription-quantitative PCR (RT-qPCR) and immunohistochemical validation in tumor tissues, ELISA and Western blot validation in sera, and correlation with survival of GBM patients. Results: Significant analysis of microarrays identified 31 upregulated and 3 downregulated genes specifically in GBMs. RT-qPCR validation on an independent set of samples confirmed the GBM-specific differential expression of several genes, including three upregulated (CALU, CXCL9, and TIMP1) and two downregulated (GPX3 and TIMP3) novel genes. With respect to osteopontin (OPN), we show the GBM-specific upregulation by RT-qPCR and immunohistochemical staining of tumor tissues. Elevated serum OPN levels in GBM patients were also shown by ELISA and Western blot. GBM patients with high serum OPN levels had poorer survival than those with low serum OPN levels (median survival 9 versus 22 months respectively; P = 0.0001). Further, we also show high serum TIMP1 levels in GBM patients compared with grade II/III patients by ELISA and downregulation of serum GPX3 and TIMP3 proteins in GBMs compared with normal control by Western blot analysis. Conclusions: Several novel potential serum biomarkers of GBM are identified and validated. High serum OPN level is found as a poor prognostic indicator in GBMs. Impact: Identified serum biomarkers may have potential utility in astrocytoma classification and GBM prognosis

    Core binding factors are necessary for natural killer cell development, and cooperate with Notch signaling during T cell specification

    Get PDF
    CBF{beta} is the non-DNA binding subunit of the core binding factors (CBFs). Mice with reduced CBF{beta} levels display profound, early defects in T but not B cell development. Here we show that CBF{beta} is also required at very early stages of natural killer (NK) cell development. We also demonstrate that T cell development aborts during specification, as the expression of Gata3 and Tcf7, which encode key regulators of T lineage specification, is substantially reduced, as are functional thymic progenitors. Constitutively active Notch or IL-7 signaling cannot restore T cell expansion or differentiation of CBF{beta} insufficient cells, nor can overexpression of Runx1 or CBF{beta} overcome a lack of Notch signaling. Therefore the ability of the prethymic cell to respond appropriately to Notch is dependent on CBF{beta}, and both signals converge to activate the T cell developmental program

    Microgravity control of autophagy modulates osteoclastogenesis

    Get PDF
    Evidence indicates that astronauts experience significant bone loss during space mission. Recently, we used the NASA developed rotary cell culture system (RCCS) to simulate microgravity (μXg) conditions and demonstrated increased osteoclastogenesis in mouse bone marrow cultures. Autophagy is a cellular recycling process of nutrients. Therefore, we hypothesize that μXg control of autophagy modulates osteoclastogenesis. Real-time PCR analysis of total RNA isolated from mouse bone marrow derived non-adherent cells subjected to modeled μXg showed a significant increase in autophagic marker Atg5, LC3 and Atg16L mRNA expression compared to ground based control (Xg) cultures. Western blot analysis of total cell lysates identified an 8.0-fold and 7.0-fold increase in the Atg5 and LC3-II expression, respectively. Confocal microscopy demonstrated an increased autophagosome formation in μXg subjected RAW 264.7 preosteoclast cells. RT2 profiler PCR array screening for autophagy related genes identified that μXg upregulates intracellular signaling molecules associated with autophagy, autophagosome components and inflammatory cytokines/growth factors which coregulate autophagy in RAW 264.7 preosteoclast cells. Autophagy inhibitor, 3-methyladenine (3-MA) treatment of mouse bone marrow derived non-adherent mononuclear cells showed a significant decrease in μXg induced Atg5 and LC3 mRNA expression in the presence or absence of RANK ligand (RANKL) stimulation. Furthermore, RANKL treatment significantly increased (8-fold) p-CREB transcription factor levels under μXg as compared to Xg cultures and 3-MA inhibited RANKL increased p-CREB expression in these cells. Also, 3-MA suppresses μXg elevated osteoclast differentiation in mouse bone marrow cultures. Thus, our results suggest that μXg induced autophagy plays an important role in enhanced osteoclast differentiation and could be a potential therapeutic target to prevent bone loss in astronauts during space flight missions

    Notch signaling during human T cell development

    Get PDF
    Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse

    Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation

    Get PDF
    Hypoxia activates the hypoxia-inducible factor (HIF), promoting glycolysis and suppressing mitochondrial respiration. In the type 2 diabetic heart, glycolysis is suppressed whereas fatty acid metabolism is promoted. The diabetic heart experiences chronic hypoxia as a consequence of increased obstructive sleep apnoea and cardiovascular disease. Given the opposing metabolic effects of hypoxia and diabetes, we questioned whether diabetes affects cardiac metabolic adaptation to hypoxia. Control and type 2 diabetic rats were housed for 3 weeks in normoxia or 11% oxygen. Metabolism and function were measured in the isolated perfused heart using radiolabelled substrates. Following chronic hypoxia, both control and diabetic hearts upregulated glycolysis, lactate efflux and glycogen content and decreased fatty acid oxidation rates, with similar activation of HIF signalling pathways. However, hypoxia-induced changes were superimposed on diabetic hearts that were metabolically abnormal in normoxia, resulting in glycolytic rates 30% lower, and fatty acid oxidation 36% higher, in hypoxic diabetic hearts than hypoxic controls. Peroxisome proliferator-activated receptor α target proteins were suppressed by hypoxia, but activated by diabetes. Mitochondrial respiration in diabetic hearts was divergently activated following hypoxia compared with controls. These differences in metabolism were associated with decreased contractile recovery of the hypoxic diabetic heart following an acute hypoxic insult. In conclusion, type 2 diabetic hearts retain metabolic flexibility to adapt to hypoxia, with normal HIF signalling pathways. However, they are more dependent on oxidative metabolism following hypoxia due to abnormal normoxic metabolism, which was associated with a functional deficit in response to stress
    corecore