1,067 research outputs found

    Scanning Photo-Induced Impedance Microscopy - Resolution studies and polymer characterization

    Get PDF
    Scanning Photo-Induced Impedance Microscopy (SPIM) is an impedance imaging technique that is based on photocurrent measurements at field-effect structures. The material under investigation is deposited onto a semiconductor-insulator substrate. A thin metal film or an electrolyte solution with an immersed electrode serves as the gate contact. A modulated light beam focused into the space charge region of the semiconductor produces a photocurrent, which is directly related to the local impedance of the material. The absolute impedance of a polymer film can be measured by calibrating photocurrents using a known impedance in series with the sample. Depending on the wavelength of light used, charge carriers are not only generated in the focus but also throughout the bulk of the semiconductor. This can have adverse effects on the lateral resolution. Two-photon experiments were carried out to confine charge carrier generation to the spacecharge layer. The lateral resolution of SPIM is also limited by the lateral diffusion of charge carriers in the semiconductor. This problem can be solved by using thin silicon layers as semiconductor substrates. A resolution of better than 1 mu m was achieved using silicon on sapphire (SOS) substrates with a I l.Lm thick silicon layer

    Random walks in random Dirichlet environment are transient in dimension d≄3d\ge 3

    Full text link
    We consider random walks in random Dirichlet environment (RWDE) which is a special type of random walks in random environment where the exit probabilities at each site are i.i.d. Dirichlet random variables. On Zd\Z^d, RWDE are parameterized by a 2d2d-uplet of positive reals. We prove that for all values of the parameters, RWDE are transient in dimension d≄3d\ge 3. We also prove that the Green function has some finite moments and we characterize the finite moments. Our result is more general and applies for example to finitely generated symmetric transient Cayley graphs. In terms of reinforced random walks it implies that directed edge reinforced random walks are transient for d≄3d\ge 3.Comment: New version published at PTRF with an analytic proof of lemma

    Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats

    Get PDF
    BACKGROUND: Barley has one of the largest and most complex genomes of all economically important food crops. The rise of new short read sequencing technologies such as Illumina/Solexa permits such large genomes to be effectively sampled at relatively low cost. Based on the corresponding sequence reads a Mathematically Defined Repeat (MDR) index can be generated to map repetitive regions in genomic sequences. RESULTS: We have generated 574 Mbp of Illumina/Solexa sequences from barley total genomic DNA, representing about 10% of a genome equivalent. From these sequences we generated an MDR index which was then used to identify and mark repetitive regions in the barley genome. Comparison of the MDR plots with expert repeat annotation drawing on the information already available for known repetitive elements revealed a significant correspondence between the two methods. MDR-based annotation allowed for the identification of dozens of novel repeat sequences, though, which were not recognised by hand-annotation. The MDR data was also used to identify gene-containing regions by masking of repetitive sequences in eight de-novo sequenced bacterial artificial chromosome (BAC) clones. For half of the identified candidate gene islands indeed gene sequences could be identified. MDR data were only of limited use, when mapped on genomic sequences from the closely related species Triticum monococcum as only a fraction of the repetitive sequences was recognised. CONCLUSION: An MDR index for barley, which was obtained by whole-genome Illumina/Solexa sequencing, proved as efficient in repeat identification as manual expert annotation. Circumventing the labour-intensive step of producing a specific repeat library for expert annotation, an MDR index provides an elegant and efficient resource for the identification of repetitive and low-copy (i.e. potentially gene-containing sequences) regions in uncharacterised genomic sequences. The restriction that a particular MDR index can not be used across species is outweighed by the low costs of Illumina/Solexa sequencing which makes any chosen genome accessible for whole-genome sequence sampling

    Discriminating the trapped electron modes contribution in density fluctuation spectra

    Get PDF
    Quasi-coherent (QC) modes have been reported for more than 10 years in reflectometry fluctuations spectra in the core region of fusion plasmas. They have characteristics in-between coherent and broadband fluctuations as they oscillate at a marked frequency but have a wide spectrum. This work presents further evidences of the link recently established between QC modes and the trapped electron modes (TEM) instabilities (Arnichand et al 2014 Nucl. Fusion 54 123017). In electron cyclotron resonance heated discharges of Tore Supra, an enhancement of QC modes amplitude is observed in a region where TEM cause impurity transport and turbulence. In JET Ohmic plasmas, QC modes disappear during density ramp-up and current ramp-down. This is reminiscent of Tore Supra and TEXTOR observations during transitions from the linear Ohmic confinement (LOC) to the saturated Ohmic confinement (SOC) regimes. Evidencing TEM activity then becomes experimentally possible via analysis of fluctuation spectra.EURATOM 63305

    Southern hemisphere plants show more delays than advances in flowering phenology

    Get PDF
    Shifts in flowering phenology have been studied in detail in the northern hemisphere and are a key plant response to climate change. However, there are relatively fewer data on species' phenological shifts in the southern hemisphere. We combined historic field data, data from herbarium specimens dating back to 1842 and modern field data for 37 Australian species to determine whether species were flowering earlier in the year than they had in the past. We also combined our results with data compiled in the southern and northern hemispheres, respectively, to determine whether southern hemisphere species are showing fewer advances in flowering phenology through time. Across our study species, we found that 12 species had undergone significant shifts in flowering time, with four species advancing their flowering and eight species delaying their flowering. The remaining 25 species showed no significant shifts in their flowering phenology. These findings are important because delays or lack of shifts in flowering phenology can lead to mismatches in trophic interactions between plants and pollinators or seed dispersers, which can have substantial impacts on ecosystem functioning and primary productivity. Combining our field results with data compiled from the literature showed that only 58.5% of southern hemisphere species were advancing their flowering time, compared with 81.6% of species that were advancing their flowering time in the northern hemisphere. Our study provides further evidence that it is not adequate for ecologists to assume that southern hemisphere ecosystems will respond to future climate change in the same way as ecosystems north of the Equator. Synthesis. Field data and data from the literature indicate that southern hemisphere species are showing fewer advances in their flowering phenology through time, especially in comparison to northern hemisphere species

    On non-zero space average density perturbation effects in tokamak plasma reflectometer signals

    Get PDF
    12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France)The effects of the non-zero average density perturbation on phase and amplitude measured by reflectometry are presented. The non-zero average density perturbation on the phase variation can be seen as an index effect as soon as the shape of the density perturbation does not introduce spectral effects. Amplitude modulation in time follows generally the properties of the cut-off layer seen as a mirror but some specific situations produce a time modulation two times higher than the input time variation of the density perturbation as observed in Tore Supra. The introduction of secondary cut-off can exhibit this effect as shown in 2D simulations

    Modelling dependency networks to inform data structures in BIM and smart cities

    Get PDF
    The pervasive deployment of "smart city" and "smart building" projects in cities world-wide is driving innovation on many fronts including; technology, telematics, engineering and entrepreneurship. This paper focuses on the technical and engineering perspectives of BIM and smart cities, by extending building and urban morphology studies as to respond to the challenges posed by Big Data, and smart infrastructure. The proposed framework incorporates theoretical and modelling descriptions to verify how network-based models can act as the backbone skeletal representation of both building and urban complexity, and yet relate to environmental performance and smart infrastructure. The paper provides some empirical basis to support data information models through building dependency networks as to represent the relationships between different existing and smart infrastructure components. These dependency networks are thought to inform decisions on how to represent building and urban data sets in response to different social and environmental performance requirements, feeding that into void and solid descriptions of data maturity models. It is concluded that network-based models are fundamental to comprehend and represent the complexity of cities and inform urban design and public policy practices, in the design and operation phases of infrastructure projects

    Informed Decisions for Actions in Maternal and Newborn Health 2010–17 Report What works, why and how in maternal and newborn health

    Get PDF
    IDEAS is a measurement, learning and evaluation project based at the London School of Hygiene & Tropical Medicine (LSHTM). The project aims to find out “what works, why, and how” for maternal and newborn health in three low-resource settings in Nigeria, India, and Ethiopia. The IDEAS team includes 20 research and professional support staff, living in Abuja, Addis Ababa, London, and New Delhi, who have been working since 2010 with the Bill & Melinda Gates Foundation (the foundation) and with the foundation’s implementation partners

    Towards species-level forecasts of drought-induced tree mortality risk

    Get PDF
    Predicting species-level responses to drought at the landscape scale is critical to reducing uncertainty in future terrestrial carbon and water cycle projections. We embedded a stomatal optimisation model in the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and parameterised the model for 15 canopy dominant eucalypt tree species across South-Eastern Australia (mean annual precipitation range: 344–1424 mm yr−1). We conducted three experiments: applying CABLE to the 2017–2019 drought; a 20% drier drought; and a 20% drier drought with a doubling of atmospheric carbon dioxide (CO2). The severity of the drought was highlighted as for at least 25% of their distribution ranges, 60% of species experienced leaf water potentials beyond the water potential at which 50% of hydraulic conductivity is lost due to embolism. We identified areas of severe hydraulic stress within-species’ ranges, but we also pinpointed resilience in species found in predominantly semiarid areas. The importance of the role of CO2 in ameliorating drought stress was consistent across species. Our results represent an important advance in our capacity to forecast the resilience of individual tree species, providing an evidence base for decision-making around the resilience of restoration plantings or net-zero emission strategies
    • 

    corecore