15 research outputs found

    Sorting Signals, N-Terminal Modifications and Abundance of the Chloroplast Proteome

    Get PDF
    Characterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS) of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins. Based on repeated and independent MS based protein identifications requiring multiple matched peptide sequences, as well as literature, 916 nuclear-encoded proteins were assigned with high confidence to the plastid, of which 86% had a predicted chloroplast transit peptide (cTP). The protein abundance of soluble stromal proteins was calculated from normalized spectral counts from LTQ-Obitrap analysis and was found to cover four orders of magnitude. Comparison to gel-based quantification demonstrates that ‘spectral counting’ can provide large scale protein quantification for Arabidopsis. This quantitative information was used to determine possible biases for protein targeting prediction by TargetP and also to understand the significance of protein contaminants. The abundance data for 550 stromal proteins was used to understand abundance of metabolic pathways and chloroplast processes. We highlight the abundance of 48 stromal proteins involved in post-translational proteome homeostasis (including aminopeptidases, proteases, deformylases, chaperones, protein sorting components) and discuss the biological implications. N-terminal modifications were identified for a subset of nuclear- and chloroplast-encoded proteins and a novel N-terminal acetylation motif was discovered. Analysis of cTPs and their cleavage sites of Arabidopsis chloroplast proteins, as well as their predicted rice homologues, identified new species-dependent features, which will facilitate improved subcellular localization prediction. No evidence was found for suggested targeting via the secretory system. This study provides the most comprehensive chloroplast proteome analysis to date and an expanded Plant Proteome Database (PPDB) in which all MS data are projected on identified gene models

    Vector-free cloning of a bacterial endo-1,4-beta-glucanase in Lactobacillus plantarum and effect on the acidifying activity in silage: Use of a recombinant cellulolytic Lactobacillus plantarum as silage inoculant

    No full text
    In this research, the advantage of use of cellulolytic recombinant Lactobacillus plantarum as microbial inoculants for alfalfa silage fermentation was evaluated. To such purpose, two L. plantarum strains, one (L. plantarum Lp80) currently commercialised and the other (L. plantarum B41) suitable as silage microbial additive, were genetically modified by integration of celA gene, encoding an alkaline endo-1,4-beta-glucanase from Bacillus sp., in the chromosome, by means of a vector-free cloning technique. The heterologous gene was cloned in two fashions: preceded by two promoters (AC1 modification) or in translational coupling with a partial upstream ORF (AC2 modification). Therefore two different genetically modified organisms (GMOs) per each wild-type (WT), producing 43-59 U/l cellulase in 16 h, were examined. Thirty-five micro-ensiling experiments were carried out by inoculating the WT or the derived GMOs. L. plantarum B41AC1 cellulolytic clone exhibited significantly increased acidification capacity in silage samples incubated at 37 degrees C. No advantage of use was evident for the other GMOs

    Chloroplasts: New Proteins, New Functions, and a Plastid Proteome Database[W]

    No full text
    An extensive analysis of the Arabidopsis thaliana peripheral and integral thylakoid membrane proteome was performed by sequential extractions with salt, detergent, and organic solvents, followed by multidimensional protein separation steps (reverse-phase HPLC and one- and two-dimensional electrophoresis gels), different enzymatic and nonenzymatic protein cleavage techniques, mass spectrometry, and bioinformatics. Altogether, 154 proteins were identified, of which 76 (49%) were α-helical integral membrane proteins. Twenty-seven new proteins without known function but with predicted chloroplast transit peptides were identified, of which 17 (63%) are integral membrane proteins. These new proteins, likely important in thylakoid biogenesis, include two rubredoxins, a potential metallochaperone, and a new DnaJ-like protein. The data were integrated with our analysis of the lumenal-enriched proteome. We identified 83 out of 100 known proteins of the thylakoid localized photosynthetic apparatus, including several new paralogues and some 20 proteins involved in protein insertion, assembly, folding, or proteolysis. An additional 16 proteins are involved in translation, demonstrating that the thylakoid membrane surface is an important site for protein synthesis. The high coverage of the photosynthetic apparatus and the identification of known hydrophobic proteins with low expression levels, such as cpSecE, Ohp1, and Ohp2, indicate an excellent dynamic resolution of the analysis. The sequential extraction process proved very helpful to validate transmembrane prediction. Our data also were cross-correlated to chloroplast subproteome analyses by other laboratories. All data are deposited in a new curated plastid proteome database (PPDB) with multiple search functions (http://cbsusrv01.tc.cornell.edu/users/ppdb/). This PPDB will serve as an expandable resource for the plant community

    Central Functions of the Lumenal and Peripheral Thylakoid Proteome of Arabidopsis Determined by Experimentation and Genome-Wide Prediction

    No full text
    Experimental proteome analysis was combined with a genome-wide prediction screen to characterize the protein content of the thylakoid lumen of Arabidopsis chloroplasts. Soluble thylakoid proteins were separated by two-dimensional electrophoresis and identified by mass spectrometry. The identities of 81 proteins were established, and N termini were sequenced to validate localization prediction. Gene annotation of the identified proteins was corrected by experimental data, and an interesting case of alternative splicing was discovered. Expression of a surprising number of paralogs was detected. Expression of five isomerases of different classes suggests strong (un)folding activity in the thylakoid lumen. These isomerases possibly are connected to a network of peripheral and lumenal proteins involved in antioxidative response, including peroxiredoxins, m-type thioredoxins, and a lumenal ascorbate peroxidase. Characteristics of the experimentally identified lumenal proteins and their orthologs were used for a genome-wide prediction of the lumenal proteome. Lumenal proteins with a typical twin-arginine translocation motif were predicted with good accuracy and sensitivity and included additional isomerases and proteases. Thus, prime functions of the lumenal proteome include assistance in the folding and proteolysis of thylakoid proteins as well as protection against oxidative stress. Many of the predicted lumenal proteins must be present at concentrations at least 10,000-fold lower than proteins of the photosynthetic apparatus

    Generation and characterization of a collection of knock-down lines for the chloroplast Clp protease complex in tobacco

    Get PDF
    Protein degradation in chloroplasts is carried out by a set of proteases that eliminate misfolded, damaged, or superfluous proteins. The ATP-dependent caseinolytic protease (Clp) is the most complex protease in plastids and has been implicated mainly in stromal protein degradation. In contrast, FtsH, a thylakoid membrane-Associated metalloprotease, is believed to participate mainly in the degradation of thylakoidal proteins. To determine the role of specific Clp and FtsH subunits in plant growth and development, RNAi lines targeting at least one subunit of each Clp ring and FtsH were generated in tobacco. In addition, mutation of the translation initiation codon was employed to downregulate expression of the plastid-encoded ClpP1 subunit. These protease lines cover a broad range of reductions at the transcript and protein levels of the targeted genes. A wide spectrum of phenotypes was obtained, including pigment deficiency, alterations in leaf development, leaf variegations, and impaired photosynthesis. When knock-down lines for the different protease subunits were compared, both common and specific phenotypes were observed, suggesting distinct functions of at least some subunits. Our work provides a well-characterized collection of knockdown lines for plastid proteases in tobacco and reveals the importance of the Clp protease in physiology and plant development
    corecore