2,383 research outputs found

    What is the scientific basis for climate-smart agriculture?

    Get PDF
    Climate-smart agriculture (CSA) is a systematic approach to agricultural development. It intends to address climate change and food security challenges simultaneously across levels, from field management to national policy, with goals to 1) improve food security and agricultural productivity, 2) increase the resilience of farming systems to climate change, and 3) mitigate greenhouse gas (GHG) emissions or sequester carbon. After the introduction of the CSA concept in 2010, development organizations, national governments, and donors have quickly adopted a “climate-smart” agenda

    A Categorical Equivalence between Generalized Holonomy Maps on a Connected Manifold and Principal Connections on Bundles over that Manifold

    Get PDF
    A classic result in the foundations of Yang-Mills theory, due to J. W. Barrett ["Holonomy and Path Structures in General Relativity and Yang-Mills Theory." Int. J. Th. Phys. 30(9), (1991)], establishes that given a "generalized" holonomy map from the space of piece-wise smooth, closed curves based at some point of a manifold to a Lie group, there exists a principal bundle with that group as structure group and a principal connection on that bundle such that the holonomy map corresponds to the holonomies of that connection. Barrett also provided one sense in which this "recovery theorem" yields a unique bundle, up to isomorphism. Here we show that something stronger is true: with an appropriate definition of isomorphism between generalized holonomy maps, there is an equivalence of categories between the category whose objects are generalized holonomy maps on a smooth, connected manifold and whose arrows are holonomy isomorphisms, and the category whose objects are principal connections on principal bundles over a smooth, connected manifold. This result clarifies, and somewhat improves upon, the sense of "unique recovery" in Barrett's theorems; it also makes precise a sense in which there is no loss of structure involved in moving from a principal bundle formulation of Yang-Mills theory to a holonomy, or "loop", formulation.Comment: 20 page

    Kinetics of stochastically-gated diffusion-limited reactions and geometry of random walk trajectories

    Full text link
    In this paper we study the kinetics of diffusion-limited, pseudo-first-order A + B -> B reactions in situations in which the particles' intrinsic reactivities vary randomly in time. That is, we suppose that the particles are bearing "gates" which interchange randomly and independently of each other between two states - an active state, when the reaction may take place, and a blocked state, when the reaction is completly inhibited. We consider four different models, such that the A particle can be either mobile or immobile, gated or ungated, as well as ungated or gated B particles can be fixed at random positions or move randomly. All models are formulated on a dd-dimensional regular lattice and we suppose that the mobile species perform independent, homogeneous, discrete-time lattice random walks. The model involving a single, immobile, ungated target A and a concentration of mobile, gated B particles is solved exactly. For the remaining three models we determine exactly, in form of rigorous lower and upper bounds, the large-N asymptotical behavior of the A particle survival probability. We also realize that for all four models studied here such a probalibity can be interpreted as the moment generating function of some functionals of random walk trajectories, such as, e.g., the number of self-intersections, the number of sites visited exactly a given number of times, "residence time" on a random array of lattice sites and etc. Our results thus apply to the asymptotical behavior of the corresponding generating functions which has not been known as yet.Comment: Latex, 45 pages, 5 ps-figures, submitted to PR

    Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington’s disease knock-in striatal cells

    Get PDF
    Akt, protein kinase B; ARE, antioxidant response element; Erk, extracellular signal-regulated kinase; CBP, CREB-binding protein; CREB, cAMP response-element (CRE) binding protein; CDK, cyclin-dependent kinase; DHE, dihydroethidium; Drp1, dynamin-related protein 1 or dynamin 1-like (DNM1L); GCL, glutamate-cysteine ligase; GCLc, glutamate-cysteine catalytic subunit; GPx, glutathione peroxidase; GSH, glutathione, reduced form; GSSG, glutathione oxidized form; IGF-1, Insulin-like growth factor 1; IGF1R, insulin-like growth factor 1 receptor; IR, insulin receptor; IRS, insulin receptor substrate; H2DCFDA, 2â€Č,7â€Č-dichlorodihydrofluorescein diacetate; HKII, hexokinase type II; HD, Huntington’s disease; HO-1, heme oxygenase; Hsp60, heat shock 60 kDa protein 1 (chaperonin); mHtt, mutant huntingtin; mtDNA, mitochondrial DNA; MT-COII, mitochondrial-encoded cytochrome c oxidase II; mTOR, mammalian target of rapamycin; NDUFS3, NADH dehydrogenase (ubiquinone) Fe–S protein 3, 30 kDa (NADH-coenzyme Q reductase); NQO1, NAD(P)H dehydrogenase [quinone] 1; Nrf2, nuclear factor (erythroid-derived 2)-like 2; PI-3K, phosphatidylinositol 3-kinase; PGC-1α, peroxisome proliferator-activated receptor-Îł coactivator 1α; ROS, reactive oxygen species; SDHA, succinate dehydrogenase complex, subunit A, flavoprotein (Fp); SOD, superoxide dismutase; Tfam, transcription factor A, mitochondrial; TMRM, tetramethylrhodamine methyl ester; Tom20, translocase of outer mitochondrial membrane 20 homolog (yeast); Tom40, translocase of outer mitochondrial membrane 40 homolog (yeast)

    Number of Common Sites Visited by N Random Walkers

    Full text link
    We compute analytically the mean number of common sites, W_N(t), visited by N independent random walkers each of length t and all starting at the origin at t=0 in d dimensions. We show that in the (N-d) plane, there are three distinct regimes for the asymptotic large t growth of W_N(t). These three regimes are separated by two critical lines d=2 and d=d_c(N)=2N/(N-1) in the (N-d) plane. For d<2, W_N(t)\sim t^{d/2} for large t (the N dependence is only in the prefactor). For 2<d<d_c(N), W_N(t)\sim t^{\nu} where the exponent \nu= N-d(N-1)/2 varies with N and d. For d>d_c(N), W_N(t) approaches a constant as t\to \infty. Exactly at the critical dimensions there are logaritmic corrections: for d=2, we get W_N(t)\sim t/[\ln t]^N, while for d=d_c(N), W_N(t)\sim \ln t for large t. Our analytical predictions are verified in numerical simulations.Comment: 5 pages, 3 .eps figures include

    The roots of "Western European societal evolution". A concept of Europe by JenƑ SzƱcs

    Get PDF
    JenƑ SzƱcs wrote his essay entitled Sketch on the three regions of Europe in the early 1980s in Hungary. During these years, a historically well-argued opinion emphasising a substantial difference between Central European and Eastern European societies was warmly received in various circles of the political opposition. In a wider European perspective SzƱcs used the old “liberty topos” which claims that the history of Europe is no other than the fulfillment of liberty. In his Sketch, SzƱcs does not only concentrate on questions concerning the Middle Ages in Western Europe. Yet it is this stream of thought which brought a new perspective to explaining European history. His picture of the Middle Ages represents well that there is a way to integrate all typical Western motifs of post-war self-definition into a single theory. Mainly, the “liberty motif”, as a sign of “Europeanism” – in the interpretation of Bibó’s concept, Anglo-saxon Marxists and Weber’s social theory –, developed from medieval concepts of state and society and from an analysis of economic and social structures. SzƱcs’s historical aspect was a typical intellectual product of the 1980s: this was the time when a few Central European historians started to outline non-Marxist aspects of social theory and categories of modernisation theories, but concealing them with Marxist terminology

    Federated Learning of Gboard Language Models with Differential Privacy

    Full text link
    We train language models (LMs) with federated learning (FL) and differential privacy (DP) in the Google Keyboard (Gboard). We apply the DP-Follow-the-Regularized-Leader (DP-FTRL)~\citep{kairouz21b} algorithm to achieve meaningfully formal DP guarantees without requiring uniform sampling of client devices. To provide favorable privacy-utility trade-offs, we introduce a new client participation criterion and discuss the implication of its configuration in large scale systems. We show how quantile-based clip estimation~\citep{andrew2019differentially} can be combined with DP-FTRL to adaptively choose the clip norm during training or reduce the hyperparameter tuning in preparation for training. With the help of pretraining on public data, we train and deploy more than twenty Gboard LMs that achieve high utility and ρ−\rho-zCDP privacy guarantees with ρ∈(0.2,2)\rho \in (0.2, 2), with two models additionally trained with secure aggregation~\citep{bonawitz2017practical}. We are happy to announce that all the next word prediction neural network LMs in Gboard now have DP guarantees, and all future launches of Gboard neural network LMs will require DP guarantees. We summarize our experience and provide concrete suggestions on DP training for practitioners.Comment: ACL industry trac
    • 

    corecore