40 research outputs found

    Efecto sobre la calidad de la leche, características tecnológicas y producción quesera de la raza merina de grazalema frente al cruce con razas mejoradas

    Get PDF
    En los últimos años se están incorporando masivamente en España, en general y Andalucía en particular, razas ovinas foráneas de aptitud lechera, fundamentalmente las razas Assaf, Awassi y Lacaune. Su introducción está fomentando asimismo, la realización de cruces indiscriminados con nuestras razas ovinas autóctonas, de aptitud lechera pero de menor especialización, al menos cuantitativamente (Casas et al., 2005). El objetivo de este estudio ha sido analizar en dos grupos de animales de un mismo rebaño (ovejas puras de raza Merina de Grazalema, y ovejas cruzadas Merina de Grazalema x Awassi) las características de la producción lechera, y proceder a la elaboración de quesos para estudiar las posibles Consejería de Agricultura y Pesca 34 diferencias tecnológicas de los quesos derivados de ambas elaboraciones. A través del mismo se ha comprobado una mayor producción lechera de las ovejas cruzadas (167,35±13,20 kg frente a 136,84±4,25 kg) pero con un porcentaje de grasa (6,25±0,34 % frente a 8,27±0,22 %), proteína (4,71±0,14 % frente a 5,80±0,09 %) y extracto seco (10,97±0,46 % frente a 14,07±0,28 %) estadísticamente inferior. En cuanto a los parámetros de aptitud tecnológica, los valores de tiempo de coagulación medio (24,70±0,77 minutos), dureza media (dureza del coágulo a los 30 minutos) de 25,03±2,27 mm, y el rendimiento en cuajada (327,50±5,70 g/l), mostraron cifras inferiores a las referenciadas por Casas et al. (2005) para la raza ovina Merina de Grazalema. Finalmente, la velocidad de endurecimiento resultó mayor a los valores obtenidos en el trabajo citado anteriormente (4,59±0,54 min). Por otro lado, estos mismos parámetros mostraron valores inferiores en el tiempo de coagulación (19,60±0,62 minutos), velocidad de endurecimiento (3,97±0,38 min) y rendimiento en cuajada (290,55±6,67), mientras que la dureza media (32,85±2,03 mm) fue superior en las ovejas cruzadas, respecto a los valores encontrados en esta misma explotación para los animales puros. Como consecuencia de todo ello, el rendimiento quesero real fue del 30,25 % para las ovejas puras frente al 23,70 % de las cruzadas. Esto determina que la producción quesera real que se obtiene por oveja pura, sea superior al de la cruzada (41,38 kg queso fresco/ lactación frente a los 39,70 de la cruzada).Proyecto INIA. Ministerio de Educación y Ciencia

    Evaluación sensorial de quesos españoles y portugueses

    Get PDF
    Con el objetivo de evaluar sensorialmente algunos quesos portugueses y españoles, se realizaron dos evaluaciones distintas: una degustación realizada de forma rápida e informal de 9 quesos diferentes (4 españoles y 5 portugueses), y una evaluación sensorial individual de 8 quesos diferentes (4 españoles y 4 portugueses). En la prueba de degustación el atributo Sabor es el menos consensual entre los consumidores. Cuanto a la evaluación sensorial, los quesos españoles presentaron una mayor homogeneidad en los resultados, y fueron mejor evaluados globalmente. Aparentemente, los catadores españoles son más sensibles a la intensidad del olor y del sabor de los quesos, lo que podrá estar relacionado con el tipo de quesos que los consumidores españoles y portugueses consumen habitualmente. Las catadoras parecen más sensibles a la intensidad del olor del queso que los catadores, lo que está de acuerdo con las referencias sobre la mayor sensibilidad de las mujeres a los olores, justificada en términos evolutivos por su comportamiento reproductivo y maternal. En lo que respeta a las diferencias observadas entre quesos portugueses y españoles, éstas se pueden deber a diferencias tecnológicas entre los procesos productivos

    Actuaciones dentro del plan de recuperación de una raza autóctona en peligro de extinción: la raza ovina churra lebrijana. Caracteres cualitativos externos y faneróptica

    Get PDF
    La raza ovina Churra Lebrijana se localiza en la Sierra Norte de Sevilla y Sierra de Aracena y Picos de Aroche. En la actualidad, se encuentra en grave peligro de extinción, contando con no más de 200 efectivos repartidos en dos explotaciones. Ante la necesidad de abordar la llevanza del Libro Genealógico de la raza, previa concesión, por los organismos administrativos pertinentes, se están llevando a cabo una serie de actuaciones, encuadradas en un proyecto INIA, con la finalidad de preservarla. En este sentido, se han obtenido un total de 23 variables cualitativas correspondientes a las regiones de la cabeza, tronco, mamas y extremidades, así como caracteres de índole faneróptica. Se han controlado un total de 22 ejemplares (16 hembras y el total de sementales de la raza), localizados en dos explotaciones de Andalucía. Para sentar las bases que permitan recuperar y conservar la raza, es necesario realizar un análisis previo que determine la variabilidad de los caracteres analizados a fin de poder encuadrar /discriminar aquellos animales que se ajusten o no al patrón racial propuesto.Proyecto de Investigación RZ-03-019, INIA, Ministerio de Educación y Cienci

    The SAMI–Fornax Dwarfs Survey – III. Evolution of [α/Fe] in dwarfs, from Galaxy Clusters to the Local Group

    Get PDF
    Using very deep, high spectral resolution data from the SAMI Integral Field Spectrograph, we study the stellar population properties of a sample of dwarf galaxies in the Fornax Cluster, down to a stellar mass of 107 M☉, which has never been done outside the Local Group. We use full spectral fitting to obtain stellar population parameters. Adding massive galaxies from the ATLAS3D project, which we re-analysed, and the satellite galaxies of the Milky Way, we obtained a galaxy sample that covers the stellar mass range 104–1012 M☉. Using this large range, we find that the mass–metallicity relation is not linear. We also find that the [α/Fe]-stellar mass relation of the full sample shows a U-shape, with a minimum in [α/Fe] for masses between 109 and 1010 M☉. The relation between [α/Fe] and stellar mass can be understood in the following way: when the faintest galaxies enter the cluster environment, a rapid burst of star formation is induced, after which the gas content is blown away by various quenching mechanisms. This fast star formation causes high [α/Fe] values, like in the Galactic halo. More massive galaxies will manage to keep their gas longer and form several bursts of star formation, with lower [α/Fe] as a result. For massive galaxies, stellar populations are regulated by internal processes, leading to [α/Fe] increasing with mass. We confirm this model by showing that [α/Fe] correlates with clustercentric distance in three nearby clusters and also in the halo of the Milky Way.</p

    The wide-field, multiplexed, spectroscopic facility WEAVE : survey design, overview, and simulated implementation

    Get PDF
    Funding for the WEAVE facility has been provided by UKRI STFC, the University of Oxford, NOVA, NWO, Instituto de Astrofísica de Canarias (IAC), the Isaac Newton Group partners (STFC, NWO, and Spain, led by the IAC), INAF, CNRS-INSU, the Observatoire de Paris, Région Île-de-France, CONCYT through INAOE, Konkoly Observatory (CSFK), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Lund University, the Leibniz Institute for Astrophysics Potsdam (AIP), the Swedish Research Council, the European Commission, and the University of Pennsylvania.WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼ 3 million stars and detailed abundances for ∼ 1.5 million brighter field and open-cluster stars; (ii) survey ∼ 0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey  ∼ 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.PostprintPeer reviewe

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Full text link
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959\,nm at R5000R\sim5000, or two shorter ranges at R20000R\sim20\,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for \sim3 million stars and detailed abundances for 1.5\sim1.5 million brighter field and open-cluster stars; (ii) survey 0.4\sim0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey 400\sim400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z<0.5z<0.5 cluster galaxies; (vi) survey stellar populations and kinematics in 25000\sim25\,000 field galaxies at 0.3z0.70.3\lesssim z \lesssim 0.7; (vii) study the cosmic evolution of accretion and star formation using >1>1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.Comment: 41 pages, 27 figures, accepted for publication by MNRA

    Hepatic levels of S-adenosylmethionine regulate the adaptive response to fasting

    Get PDF
    26 p.-6 fig.-1 tab.-1 graph. abst.There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)—the principal methyl donor—acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, β-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes. This leads to the production of this metabolite at these sites, which acts as a brake to prevent excessive β-oxidation and mitochondrial ATP synthesis and thereby endoplasmic reticulum stress and liver injury. This work provides important insights into the previously undescribed function of SAMe as a new arm of the metabolic adaptation to fasting.M.V.-R. is supported by Proyecto PID2020-119486RB-100 (funded by MCIN/AEI/10.13039/501100011033), Gilead Sciences International Research Scholars Program in Liver Disease, Acción Estratégica Ciberehd Emergentes 2018 (ISCIII), Fundación BBVA, HORIZON-TMA-MSCA-Doctoral Networks 2021 (101073094), and Redes de Investigación 2022 (RED2022-134485-T). M.L.M.-C. is supported by La CAIXA Foundation (LCF/PR/HP17/52190004), Proyecto PID2020-117116RB-I00 (funded by MCIN/AEI/10.13039/501100011033), Ayudas Fundación BBVA a equipos de investigación científica (Umbrella 2018), and AECC Scientific Foundation (Rare Cancers 2017). A.W. is supported by RTI2018-097503-B-I00 and PID2021-127169OB-I00, (funded by MCIN/AEI/10.13039/501100011033) and by “ERDF A way of making Europe,” Xunta de Galicia (Ayudas PRO-ERC), Fundación Mutua Madrileña, and European Community’s H2020 Framework Programme (ERC Consolidator grant no. 865157 and MSCA Doctoral Networks 2021 no. 101073094). C.M. is supported by CIBERNED. P.A. is supported by Ayudas para apoyar grupos de investigación del sistema Universitario Vasco (IT1476-22), PID2021-124425OB-I00 (funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe,” MCI/UE/ISCiii [PMP21/00080], and UPV/EHU [COLAB20/01]). M.F. and M.G.B. are supported by PID2019-105739GB-I00 and PID2020-115472GB-I00, respectively (funded by MCIN/AEI/10.13039/501100011033). M.G.B. is supported by Xunta de Galicia (ED431C 2019/013). C.A., T.L.-D., and J.B.-V. are recipients of pre-doctoral fellowships from Xunta de Galicia (ED481A-2020/046, ED481A-2018/042, and ED481A 2021/244, respectively). T.C.D. is supported by Fundación Científica AECC. A.T.-R. is a recipient of a pre-doctoral fellowship from Fundación Científica AECC. S.V.A. and C.R. are recipients of Margarita Salas postdoc grants under the “Plan de Recuperación Transformación” program funded by the Spanish Ministry of Universities with European Union’s NextGeneration EU funds (2021/PER/00020 and MU-21-UP2021-03071902373A, respectively). T.C.D., A.S.-R., and M.T.-C. are recipients of Ayuda RYC2020-029316-I, PRE2019/088960, and BES-2016/078493, respectively, supported by MCIN/AEI/10.13039/501100011033 and by El FSE invierte en tu futuro. S.L.-O. is a recipient of a pre-doctoral fellowship from the Departamento de Educación del Gobierno Vasco (PRE_2018_1_0372). P.A.-G. is recipient of a FPU pre-doctoral fellowship from the Ministry of Education (FPU19/02704). CIC bioGUNE is supported by Ayuda CEX2021-001136-S financiada por MCIN/AEI/10.13039/501100011033. A.B.-C. was funded by predoctoral contract PFIS (FI19/00240) from Instituto de Salud Carlos III (ISCIII) co-funded by Fondo Social Europeo (FSE), and A.D.-L. was funded by contract Juan Rodés (JR17/00016) from ISCIII. A.B.-C. is a Miguel Servet researcher (CPII22/00008) from ISCIII.Peer reviewe

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Get PDF
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366−959\,nm at R∼5000, or two shorter ranges at R∼20000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼3 million stars and detailed abundances for ∼1.5 million brighter field and open-cluster stars; (ii) survey ∼0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ∼400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator
    corecore