1,053 research outputs found
Dendritic flux penetration in Pb films with a periodic array of antidots
We explore the flux-jump regime in type-II Pb thin films with a periodic
array of antidots by means of magneto-optical measurements. A direct
visualization of the magnetic flux distribution allows to identify a rich
morphology of flux penetration patterns. We determine the phase boundary
between dendritic penetration at low temperatures and a smooth flux
invasion at high temperatures and fields. For the whole range of fields and
temperatures studied, guided vortex motion along the principal axes of the
square pinning array is clearly observed. In particular, the branching process
of the dendrite expansion is fully governed by the underlying pinning topology.
A comparative study between macroscopic techniques and direct local
visualization shed light onto the puzzling and independent magnetic
response observed at low temperatures and fields. Finally, we find that the
distribution of avalanche sizes at low temperatures can be described by a power
law with exponent
Magnetic trapping and coherent control of laser-cooled molecules
We demonstrate coherent microwave control of the rotational, hyperfine and
Zeeman states of ultracold CaF molecules, and the magnetic trapping of these
molecules in a single, selectable quantum state. We trap about
molecules for 2 s at a temperature of 65(11) K and a density of cm. We measure the state-specific loss rate due to
collisions with background helium.Comment: 6 pages, 4 figure
Positive relationships between association strength and phenotypic similarity characterize the assembly of mixed-species bird flocks worldwide
Competition theory predicts that local communities should consist of species that are more dissimilar than expected by chance. We find a strikingly different pattern in a multicontinent data set (55 presence-absence matrices from 24 locations) on the composition of mixed-species bird flocks, which are important sub-units of local bird communities the world over. By using null models and randomization tests followed by meta-analysis, we find the association strengths of species in flocks to be strongly related to similarity in body size and foraging behavior and higher for congeneric compared with noncongeneric species pairs. Given the local spatial scales of our individual analyses, differences in the habitat preferences of species are unlikely to have caused these association patterns; the patterns observed are most likely the outcome of species interactions. Extending group-living and social-information-use theory to a heterospecific context, we discuss potential behavioral mechanisms that lead to positive interactions among similar species in flocks, as well as ways in which competition costs are reduced. Our findings highlight the need to consider positive interactions along with competition when seeking to explain community assembly
Core binding factors are necessary for natural killer cell development, and cooperate with Notch signaling during T cell specification
CBF{beta} is the non-DNA binding subunit of the core binding factors (CBFs). Mice with reduced CBF{beta} levels display profound, early defects in T but not B cell development. Here we show that CBF{beta} is also required at very early stages of natural killer (NK) cell development. We also demonstrate that T cell development aborts during specification, as the expression of Gata3 and Tcf7, which encode key regulators of T lineage specification, is substantially reduced, as are functional thymic progenitors. Constitutively active Notch or IL-7 signaling cannot restore T cell expansion or differentiation of CBF{beta} insufficient cells, nor can overexpression of Runx1 or CBF{beta} overcome a lack of Notch signaling. Therefore the ability of the prethymic cell to respond appropriately to Notch is dependent on CBF{beta}, and both signals converge to activate the T cell developmental program
Recommended from our members
The heterogeneity of wooded-agricultural landscape mosaics influences woodland bird community assemblages
Context
Landscape heterogeneity (the composition and configuration of different landcover types) plays a key role in shaping woodland bird assemblages in wooded-agricultural mosaics. Understanding how species respond to landscape factors could contribute to preventing further decline of woodland bird populations.
Objective
To investigate how woodland birds with different species traits respond to landscape heterogeneity, and to identify whether specific landcover types are important for maintaining diverse populations in wooded-agricultural environments.
Methods
Birds were sampled from woodlands in 58 2 x 2 km tetrads across southern Britain. Landscape heterogeneity was quantified for each tetrad. Bird assemblage response was determined using redundancy analysis combined with variation partitioning and response trait analyses.
Results
For woodland bird assemblages, the independent explanatory importance of landscape composition and landscape configuration variables were closely interrelated. When considered simultaneously during variation partitioning, the community response was better represented by compositional variables. Different species responded to different landscape features and this could be explained by traits relating to woodland association, foraging strata and nest location. Ubiquitous, generalist species, many of which were hole-nesters or ground foragers, correlated positively with urban landcover while specialists of broadleaved woodland avoided landscapes containing urban areas. Species typical of coniferous woodland correlated with large conifer plantations.
Conclusions
At the 2 x 2 km scale, there was evidence that the availability of resources provided by proximate landcover types was highly important for shaping woodland bird assemblages. Further research to disentangle the effects of composition and configuration at different spatial scales is advocated
Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3
GATA-3 is essential for T cell development from the earliest stages. However, abundant GATA-3 can drive T lineage precursors to a non–T cell fate, depending on Notch signaling and developmental stage. Here, overexpression of GATA-3 blocked the survival of pro–T cells when Notch-Delta signals were present but enhanced viability in their absence. In fetal thymocytes at the double-negative 1 (DN1) stage and DN2 stage but not those at the DN3 stage, overexpression of GATA-3 rapidly induced respecification to the mast cell lineage with high frequency by direct transcriptional 'reprogramming'. Normal DN2 thymocytes also showed mast cell potential when interleukin 3 and stem cell factor were added in the absence of Notch signaling. Our results suggest a close relationship between the pro–T cell and mast cell programs and a previously unknown function for Notch in T lineage fidelity
Research of working area development parameters in conditions of deep steep deposit finalizing
Отримано формули розрахунку об’єму запасів корисних копалин в приконтурній та глибинній зоні. Встановлено характер впливу параметрів доробки глибоких крутоспадних родовищ відкритим способом на доцільне положення поточних та проектних контурів кар’єру. Встановлено, що найменший середній коефіцієнт розкриву досягається при мінімальному значенні суми обсягів корисної копалини приконтурної зони лежачого і висячого боків покладу в проектному положенні. Найменший поточний коефіцієнт розкриву досягається при мінімальному значенні суми обсягів корисної копалини приконтурної зони лежачого і висячого боків покладу, а також робочого борту кар'єру в поточному положенні
Identification and rapid mapping of a gene conferring broad-spectrum late blight resistance in the diploid potato species <i>Solanum verrucosum</i> through DNA capture technologies
Key message: A broad-spectrum late blight disease-resistance gene from Solanum verrucosum has been mapped to potato chromosome 9. The gene is distinct from previously identified-resistance genes. Abstract: We have identified and characterised a broad-spectrum resistance to Phytophthora infestans from the wild Mexican species Solanum verrucosum. Diagnostic resistance gene enrichment (dRenSeq) revealed that the resistance is not conferred by previously identified nucleotide-binding, leucine-rich repeat genes. Utilising the sequenced potato genome as a reference, two complementary enrichment strategies that target resistance genes (RenSeq) and single/low-copy number genes (Generic-mapping enrichment Sequencing; GenSeq), respectively, were deployed for the rapid, SNP-based mapping of the resistance through bulked-segregant analysis. Both approaches independently positioned the resistance, referred to as Rpi-ver1, to the distal end of potato chromosome 9. Stringent post-enrichment read filtering identified a total of 64 informative SNPs that corresponded to the expected ratio for significant polymorphisms in the parents as well as the bulks. Of these, 61 SNPs are located on potato chromosome 9 and reside within 27 individual genes, which in the sequenced potato clone DM locate to positions 45.9 to 60.9 Mb. RenSeq- and GenSeq-derived SNPs within the target region were converted into allele-specific PCR-based KASP markers and further defined the position of the resistance to a 4.3 Mb interval at the bottom end of chromosome 9 between positions 52.62–56.98 Mb.</p
- …
