237 research outputs found
CD44-high neural crest stem-like cells are associated with tumour aggressiveness and poor survival in neuroblastoma tumours
BACKGROUND:
Neuroblastoma is a paediatric tumour originated from sympathoadrenal precursors and characterized by its heterogeneity and poor outcome in advanced stages. Intra-tumoral cellular heterogeneity has emerged as an important feature in neuroblastoma, with a potential major impact on tumour aggressiveness and response to therapy. CD44 is an adhesion protein involved in tumour progression, metastasis and stemness in different cancers; however, there has been controversies about the significance of CD44 expression in neuroblastoma and its relationship with tumour progression.
METHODS:
We have performed transcriptomic analysis on patient tumour samples studying the outcome of patients with high CD44 expression. Adhesion, invasion and proliferation assays were performed in sorted CD44high neuroblastoma cells. Tumoursphere cultures have been used to enrich in undifferentiated stem-like cells and to asses self-renewal and differentiation potential. We have finally performed in vivo tumorigenic assays on cell line-derived or Patient-derived xenografts.
FINDINGS:
We show that high CD44 expression is associated with low survival in high-grade human neuroblastoma, independently of MYCN amplification. CD44 is expressed in a cell population with neural crest stem-like features, and with the capacity to generate multipotent, undifferentiated tumourspheres in culture. These cells are more invasive and proliferative in vitro. CD44 positive cells obtained from tumours are more tumorigenic and metastatic, giving rise to aggressive neuroblastic tumours at high frequency upon transplantation.
INTERPRETATION:
We describe an unexpected intra-tumoural heterogeneity within cellular entities expressing CD44 in neuroblastoma, and propose that CD44 has a role in neural crest stem-like undifferentiated cells, which can contribute to tumorigenesis and malignancy in this type of cancer.
FUNDING:
Research supported by grants from the "Asociación Española contra el Cáncer" (AECC), the Spanish Ministry of Science and Innovation SAF program (SAF2016-80412-P), and the European Research Council (ERC Starting Grant to RP).Spanish Ministry of Science and Innovation SAF program (SAF2016-80412-P
Método visual de lectura de imagen aplicada a la reflexión sobre la identidad docente en la formación inicial del profesorado
Theory and design of InGaAsBi mid-infrared semiconductor lasers: type-I quantum wells for emission beyond 3 m on InP substrates
We present a theoretical analysis and optimisation of the properties and
performance of mid-infrared semiconductor lasers based on the dilute bismide
alloy InGaAsBi, grown on conventional (001) InP
substrates. The ability to independently vary the epitaxial strain and emission
wavelength in this quaternary alloy provides significant scope for band
structure engineering. Our calculations demonstrate that structures based on
compressively strained InGaAsBi quantum wells (QWs)
can readily achieve emission wavelengths in the 3 -- 5 m range, and that
these QWs have large type-I band offsets. As such, these structures have the
potential to overcome a number of limitations commonly associated with this
application-rich but technologically challenging wavelength range. By
considering structures having (i) fixed QW thickness and variable strain, and
(ii) fixed strain and variable QW thickness, we quantify key trends in the
properties and performance as functions of the alloy composition, structural
properties, and emission wavelength, and on this basis identify routes towards
the realisation of optimised devices for practical applications. Our analysis
suggests that simple laser structures -- incorporating
InGaAsBi QWs and unstrained ternary
InGaAs barriers -- which are compatible with established
epitaxial growth, provide a route to realising InP-based mid-infrared diode
lasers.Comment: Submitted versio
Videojuegos y aprendizaje colaborativo como herramienta de cambio social y educativo: formando a futuros maestros para su uso y creación
Non-Markovian polymer reaction kinetics
Describing the kinetics of polymer reactions, such as the formation of loops
and hairpins in nucleic acids or polypeptides, is complicated by the structural
dynamics of their chains. Although both intramolecular reactions, such as
cyclization, and intermolecular reactions have been studied extensively, both
experimentally and theoretically, there is to date no exact explicit analytical
treatment of transport-limited polymer reaction kinetics, even in the case of
the simplest (Rouse) model of monomers connected by linear springs. We
introduce a new analytical approach to calculate the mean reaction time of
polymer reactions that encompasses the non-Markovian dynamics of monomer
motion. This requires that the conformational statistics of the polymer at the
very instant of reaction be determined, which provides, as a by-product, new
information on the reaction path. We show that the typical reactive
conformation of the polymer is more extended than the equilibrium conformation,
which leads to reaction times significantly shorter than predicted by the
existing classical Markovian theory.Comment: Main text (7 pages, 5 figures) + Supplemantary Information (13 pages,
2 figures
Analysis of the main drivers of CO2 emissions changes in Colombia (1990e2012) and its political implications
In this study, an Index Decomposition Analysis-Logarithmic Mean Divisia Index (IDA-LMDI) model was developed to find the drivers behind the changes in CO2 emissions between 1990 and 2012 in Colombia. The results facilitate the assessment of the impact in Colombia of the main measures regarding the mitigation of CO2 emissions. Likewise, it allows us to analyze whether the recent measures implemented by the Colombian authorities to mitigate emissions are moving in the right direction. To carry out the decomposition analysis, six effects were taken into consideration: carbonization, the substitution of fossil fuels, the penetration of renewable energy, energy intensity, wealth and population. The effects of income and population appear as drivers of emissions for the period analyzed. A stylized analysis allows richer conclusions to be extracted regarding a battery of recommendations for emission mitigation policies that are compatible with economic growth in Colombi
Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunneling diode
Light emitting diodes (LEDs) in the mid-infrared (MIR) spectral range require material systems with tailored optical absorption and emission at wavelengths lambda > 2 mu m. Here, we report on MIR LEDs based on In(AsN)/(InAl)As resonant tunneling diodes (RTDs). The N-atoms lead to the formation of localized deep levels in the In(AsN) quantum well (QW) layer of the RTD. This has two main effects on the electroluminescence (EL) emission. By electrical injection of carriers into the N-related levels, EL emission is achieved at wavelengths significantly larger than for the QW emission (lambda similar to 3 mu m), extending the output of the diode to lambda similar to 5 mu m. Furthermore, for applied voltages well below the flatband condition of the diode, EL emission is observed at energies much larger than those supplied by the applied voltage and/or thermal energy, with an energy gain Delta E>0.2eV at room temperature. We attribute this upconversion luminescence to an Auger-like recombination process
Prevalence of Salmonella enterica in poultry and eggs in Uruguay during an epidemic due to Salmonella enterica serovar Enteritidis
Salmonella enterica serovar Enteritidis (S. Enteritidis) is frequently associated with food-borne disease worldwide. Poultry-derived products are a major source. An epidemic of human infection with S. Enteritidis occurred in Uruguay, and to evaluate the extent of poultry contamination, we conducted a nationwide survey over 2 years that included the analysis of sera from 5,751 birds and 12,400 eggs. Serological evidence of infection with Salmonella group O:9 was found in 24.4% of the birds. All positive sera were retested with a gm flagellum-based enzyme-linked immunosorbent assay, and based on these results, the national prevalence of S. Enteritidis infection was estimated to be 6.3%. Salmonellae were recovered from 58 of 620 pools made up of 20 eggs each, demonstrating a prevalence of at least 1 in every 214 eggs. Surprisingly, the majority of the isolates were not S. Enteritidis. Thirty-nine isolates were typed as S. Derby, 9 as S. Gallinarum, 8 as S. Enteritidis, and 2 as S. Panama. Despite the highest prevalence in eggs, S. Derby was not isolated from humans in the period of analysis, suggesting a low capacity to infect humans. Microarray-based comparative genomic hybridization analysis of S. Derby and S. Enteritidis revealed more than 350 genetic differences. S. Derby lacked pathogenicity islands 13 and 14, the fimbrial lpf operon, and other regions encoding metabolic functions. Several of these regions are present not only in serovar Enteritidis but also in all sequenced strains of S. Typhimurium, suggesting that these regions might be related to the capacity of Salmonella to cause food-borne disease
- …
